How do you solve $\sin x+3\cos x=3?$
Answer
Verified
440.1k+ views
Hint: Here, a trigonometric equation is given which we have to simplify.
Here, we are using a basic formula for simplifying the equation i.e. ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
We also have to use a trigonometric functions of ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
And after solving the equation, we will get the value of $x$ in the form of angles and convert it into radians. We can check the value of $x$ by substituting the value of $x$ in the given equation.
Complete step by step solution:
In this numerical a trigonometric equation is given which is as follows:
$\sin x+3\cos x=3...(i)$
Squaring the equation $(i)$ for getting some identities to solve further.
${{\left( \sin x+3\cos x \right)}^{2}}={{\left( 3 \right)}^{2}}$
Now, simplify the above equation. The left hand side is in the form of ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
${{\sin }^{2}}x+2\times 3\sin x\cos x+{{\left( 3 \right)}^{2}}{{\cos }^{2}}x=9$
$\Rightarrow {{\sin }^{2}}x+6\sin x\cos x+9{{\cos }^{2}}x=9$
Now transpose $9{{\cos }^{2}}x$ to the right side ${{\sin }^{2}}x+6\sin \cos x=9-9{{\cos }^{2}}x$
${{\sin }^{2}}x+6\sin x\cos x=9\left( 1-{{\cos }^{2}}x \right)$
As, we know that,
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
$\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x$
$\Rightarrow {{\sin }^{2}}x+6\sin x\cos x=9{{\sin }^{2}}x$
Subtract ${{\sin }^{2}}x$ on the both sides from the above equation. We get,
${{\sin }^{2}}x+6\sin x\cos x-{{\sin }^{2}}x=9{{\sin }^{2}}x-{{\sin }^{2}}x$
$6\sin x\cos x=8{{\sin }^{2}}x$
Now separate the like terms,
$\dfrac{\sin x\cos x}{{{\sin }^{2}}x}=\dfrac{8}{6}$
$\Rightarrow \dfrac{\cos x}{\sin x}=\dfrac{8}{6}$
$\Rightarrow \cot x=\dfrac{4}{3}$
We know that,
$\cot x=\dfrac{1}{\tan x}={{\tan }^{-1}}x$
$\Rightarrow x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)...(ii)$
$\Rightarrow x=36.80$
$x=0.6435$ radians
Therefore the value of $x$ for the given trigonometric equation is $0.6435$ radians.
Additional Information:
For solving a trigonometric equation we have to transform that trigonometric equation into one or more than one basic trigonometric function or equations.
It means that solving a trigonometric equation is nothing but solving one or more basic trigonometric equations or functions.
Trigonometric equations or functions.
Trigonometric equations has $4$ basic equations or functions:
$\sin x=a,\cos x=a$
$\tan x=a,\cot x=a$
Using above basic functions of trigonometry other simplified equations can be make.
Note: In equation $(ii)$
$x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$
But the original equation is,
$\cot x=\dfrac{4}{3}$
$\Rightarrow\dfrac{1}{\tan x}=\cot x$
${{\tan }^{-1}}x=\cot x$
Now, ${{\tan }^{-1}}\left( \dfrac{3}{4} \right)$
$x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$
$=0.6435$ radians
We can solve this questions in other way too which is as follows:
The given equation is,
$\sin x+3\cos x=3...(i)$
Now, put $\tan a=3$
$a={{\tan }^{-1}}\left( 3 \right)$
$a=71.56$
And $\cos a=\cos \left( 71.56 \right)=0.32$
Now, put $\dfrac{\sin a}{\cos a}$ at the place of $3$ in left side only of the equation $(iii)$
$\left( \dfrac{\sin a}{\cos a} \right)\cos x=3...(ii)$
Multiply $\cos a$ at both sides of equation $(ii)$
$\sin x\cos a+\left( \dfrac{\sin a}{\cos a} \right)\cos a\cos x=3\cos a$
$\Rightarrow\sin x\cos a+\sin a\cos x=3\cos a$
$\Rightarrow\sin \left( x+a \right)=3\cos a...(iii)$
But as we already calculated above
$a=71.56$
$\cos a=0.32$
The equation $(iii)$ becomes
$\sin \left( x+71.56 \right)=3\left( 0.32 \right)$
$\Rightarrow\sin \left( x+71.56 \right)=0.96$
The angle should be of $180{}^\circ $
$x+71.56{}^\circ =0$
$\Rightarrow x+71.56{}^\circ =180{}^\circ -71.56{}^\circ $
$\Rightarrow=108{}^\circ .44{}^\circ $
$x=108{}^\circ .44{}^\circ -71.56{}^\circ $$x=36.88{}^\circ $
We can also verify the answer.
Put value of $x=36.86{}^\circ $ or $x=0.6435$ in equation $(i)$
$\sin x+3\cos x=3$
$\Rightarrow\sin \left( 36.86 \right)+3\cos \left( 36.86 \right)=3$
$\Rightarrow0.6+3\times 0.8=3$
$\Rightarrow0.6+2.4=3$
$3=3$
Or $\sin x+3\cos x=3$
$\sin \left( 0.6435 \right)+3\cos \left( 0.6435 \right)=3$
$\Rightarrow0.012+3\times 2.9997=3$
$\Rightarrow3.0109=3$
$3\simeq 3$
From above it is clear that the value of $x=36.86{}^\circ $ or $x=0.6435$ radians is correct.
Here, we are using a basic formula for simplifying the equation i.e. ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
We also have to use a trigonometric functions of ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
And after solving the equation, we will get the value of $x$ in the form of angles and convert it into radians. We can check the value of $x$ by substituting the value of $x$ in the given equation.
Complete step by step solution:
In this numerical a trigonometric equation is given which is as follows:
$\sin x+3\cos x=3...(i)$
Squaring the equation $(i)$ for getting some identities to solve further.
${{\left( \sin x+3\cos x \right)}^{2}}={{\left( 3 \right)}^{2}}$
Now, simplify the above equation. The left hand side is in the form of ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
${{\sin }^{2}}x+2\times 3\sin x\cos x+{{\left( 3 \right)}^{2}}{{\cos }^{2}}x=9$
$\Rightarrow {{\sin }^{2}}x+6\sin x\cos x+9{{\cos }^{2}}x=9$
Now transpose $9{{\cos }^{2}}x$ to the right side ${{\sin }^{2}}x+6\sin \cos x=9-9{{\cos }^{2}}x$
${{\sin }^{2}}x+6\sin x\cos x=9\left( 1-{{\cos }^{2}}x \right)$
As, we know that,
${{\sin }^{2}}x+{{\cos }^{2}}x=1$
$\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x$
$\Rightarrow {{\sin }^{2}}x+6\sin x\cos x=9{{\sin }^{2}}x$
Subtract ${{\sin }^{2}}x$ on the both sides from the above equation. We get,
${{\sin }^{2}}x+6\sin x\cos x-{{\sin }^{2}}x=9{{\sin }^{2}}x-{{\sin }^{2}}x$
$6\sin x\cos x=8{{\sin }^{2}}x$
Now separate the like terms,
$\dfrac{\sin x\cos x}{{{\sin }^{2}}x}=\dfrac{8}{6}$
$\Rightarrow \dfrac{\cos x}{\sin x}=\dfrac{8}{6}$
$\Rightarrow \cot x=\dfrac{4}{3}$
We know that,
$\cot x=\dfrac{1}{\tan x}={{\tan }^{-1}}x$
$\Rightarrow x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)...(ii)$
$\Rightarrow x=36.80$
$x=0.6435$ radians
Therefore the value of $x$ for the given trigonometric equation is $0.6435$ radians.
Additional Information:
For solving a trigonometric equation we have to transform that trigonometric equation into one or more than one basic trigonometric function or equations.
It means that solving a trigonometric equation is nothing but solving one or more basic trigonometric equations or functions.
Trigonometric equations or functions.
Trigonometric equations has $4$ basic equations or functions:
$\sin x=a,\cos x=a$
$\tan x=a,\cot x=a$
Using above basic functions of trigonometry other simplified equations can be make.
Note: In equation $(ii)$
$x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$
But the original equation is,
$\cot x=\dfrac{4}{3}$
$\Rightarrow\dfrac{1}{\tan x}=\cot x$
${{\tan }^{-1}}x=\cot x$
Now, ${{\tan }^{-1}}\left( \dfrac{3}{4} \right)$
$x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$
$=0.6435$ radians
We can solve this questions in other way too which is as follows:
The given equation is,
$\sin x+3\cos x=3...(i)$
Now, put $\tan a=3$
$a={{\tan }^{-1}}\left( 3 \right)$
$a=71.56$
And $\cos a=\cos \left( 71.56 \right)=0.32$
Now, put $\dfrac{\sin a}{\cos a}$ at the place of $3$ in left side only of the equation $(iii)$
$\left( \dfrac{\sin a}{\cos a} \right)\cos x=3...(ii)$
Multiply $\cos a$ at both sides of equation $(ii)$
$\sin x\cos a+\left( \dfrac{\sin a}{\cos a} \right)\cos a\cos x=3\cos a$
$\Rightarrow\sin x\cos a+\sin a\cos x=3\cos a$
$\Rightarrow\sin \left( x+a \right)=3\cos a...(iii)$
But as we already calculated above
$a=71.56$
$\cos a=0.32$
The equation $(iii)$ becomes
$\sin \left( x+71.56 \right)=3\left( 0.32 \right)$
$\Rightarrow\sin \left( x+71.56 \right)=0.96$
The angle should be of $180{}^\circ $
$x+71.56{}^\circ =0$
$\Rightarrow x+71.56{}^\circ =180{}^\circ -71.56{}^\circ $
$\Rightarrow=108{}^\circ .44{}^\circ $
$x=108{}^\circ .44{}^\circ -71.56{}^\circ $$x=36.88{}^\circ $
We can also verify the answer.
Put value of $x=36.86{}^\circ $ or $x=0.6435$ in equation $(i)$
$\sin x+3\cos x=3$
$\Rightarrow\sin \left( 36.86 \right)+3\cos \left( 36.86 \right)=3$
$\Rightarrow0.6+3\times 0.8=3$
$\Rightarrow0.6+2.4=3$
$3=3$
Or $\sin x+3\cos x=3$
$\sin \left( 0.6435 \right)+3\cos \left( 0.6435 \right)=3$
$\Rightarrow0.012+3\times 2.9997=3$
$\Rightarrow3.0109=3$
$3\simeq 3$
From above it is clear that the value of $x=36.86{}^\circ $ or $x=0.6435$ radians is correct.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE