Answer
Verified
408.3k+ views
Hint: For finding a very small part of a whole quantity, we use derivatives, while integration means finding the whole quantity from the given small part, integration is also called antiderivative. In this question, we have to find the integration of the given quantity. The function which has to be integrated is a fraction containing the product of x and the natural logarithm of x, so we can simplify it by using the substitution method and then find its integration.
Complete step-by-step solution:
In this question, we have to integrate $\dfrac{1}{{x\ln x}}dx$
For that we will let $\ln x = u$
Now, differentiating the above-supposed condition with respect to x, we get –
$
\dfrac{{d(\ln x)}}{{dx}} = \dfrac{{du}}{{dx}} \\
\Rightarrow du = \dfrac{1}{x}dx \\
$
Put the above two values in the given equation, we get –
$
\dfrac{1}{{x\ln x}}dx = \dfrac{1}{u}du \\
\Rightarrow \int {\dfrac{1}{{x\ln x}}dx} = \int {\dfrac{1}{u}du} \\
\Rightarrow \int {\dfrac{1}{{x\ln x}}dx} = \ln \left| u \right| + c \\
\Rightarrow \int {\dfrac{1}{{x\ln x}}dx} = \ln (\left| {\ln x} \right|) + c \\
$
Hence the integration of $\dfrac{1}{{x\ln x}}dx$ is $\ln (\left| {\ln x} \right|) + c$ .
Additional information:
In differential calculus, we have to find the derivative or differential of a given function but integration is the inverse process of differentiation. When the derivative of a function is given and we have to find the function, we use integration.
Note: There are two types of integrals, definite integral and indefinite integrals, a definite integral is defined as an integral that is expressed with upper and lower limits while an integral that is expressed without limits like in this question is known as an indefinite integral. The derivative of a function is unique but a function can have infinite integrals or anti-derivatives. Here, one can get different values of integral of a function by varying the value of the arbitrary constant.
Complete step-by-step solution:
In this question, we have to integrate $\dfrac{1}{{x\ln x}}dx$
For that we will let $\ln x = u$
Now, differentiating the above-supposed condition with respect to x, we get –
$
\dfrac{{d(\ln x)}}{{dx}} = \dfrac{{du}}{{dx}} \\
\Rightarrow du = \dfrac{1}{x}dx \\
$
Put the above two values in the given equation, we get –
$
\dfrac{1}{{x\ln x}}dx = \dfrac{1}{u}du \\
\Rightarrow \int {\dfrac{1}{{x\ln x}}dx} = \int {\dfrac{1}{u}du} \\
\Rightarrow \int {\dfrac{1}{{x\ln x}}dx} = \ln \left| u \right| + c \\
\Rightarrow \int {\dfrac{1}{{x\ln x}}dx} = \ln (\left| {\ln x} \right|) + c \\
$
Hence the integration of $\dfrac{1}{{x\ln x}}dx$ is $\ln (\left| {\ln x} \right|) + c$ .
Additional information:
In differential calculus, we have to find the derivative or differential of a given function but integration is the inverse process of differentiation. When the derivative of a function is given and we have to find the function, we use integration.
Note: There are two types of integrals, definite integral and indefinite integrals, a definite integral is defined as an integral that is expressed with upper and lower limits while an integral that is expressed without limits like in this question is known as an indefinite integral. The derivative of a function is unique but a function can have infinite integrals or anti-derivatives. Here, one can get different values of integral of a function by varying the value of the arbitrary constant.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths