
How do you graph $r=2-2\cos \theta $?
Answer
541.2k+ views
Hint: We explain the number of ways position of a point or equation can be expressed in different forms. To form the graph of $r=2-2\cos \theta $, we need to find its rectangular form. We also explain the ways the representation works for polar and cartesian form. Then we convert the given equation into rectangular form using the relations $x=r\cos \theta ;y=r\sin \theta $.
Complete step by step answer:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=2-2\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=2-2\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is
$x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$.
We now replace the value of $\cos \theta =\dfrac{x}{r}$ in the equation $r=2-2\cos \theta $ to get
\[\begin{align}
& r=2-2\cos \theta \\
& \Rightarrow r=2-2\left( \dfrac{x}{r} \right) \\
& \Rightarrow r+\dfrac{2x}{r}=2 \\
\end{align}\]
We now take the square value of the equation \[r+\dfrac{2x}{r}=2\].
Taking square, we get
\[\begin{align}
& {{\left( r+\dfrac{2x}{r} \right)}^{2}}={{2}^{2}} \\
& \Rightarrow {{r}^{2}}+4x+\dfrac{4{{x}^{2}}}{{{r}^{2}}}=4 \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation.
The revised equation becomes \[\left( {{x}^{2}}+{{y}^{2}} \right)+4x+\dfrac{4{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}=4\].
Note:
In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in the cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Complete step by step answer:
There are always two ways to represent any point equation in our general 2-D and 3-D surfaces. One being the polar form and other one being the cartesian form. The other name of the cartesian form is rectangular form.
In case of polar form, we use the distance and the angle from the origin to get the position of the point or curve.
The given equation $r=2-2\cos \theta $ is a representation of the polar form. r represents the distance and $\theta $ represents the angle.
In case of rectangular form, we use the coordinates from the origin to get the position of the point or curve. For two dimensional things we have X-Y and for three dimensional things we have X-Y-Z. We take the perpendicular distances from the axes.
We need to convert the given equation $r=2-2\cos \theta $ into the rectangular form.
The relation between these two forms in two-dimensional is
$x=r\cos \theta ;y=r\sin \theta ;{{x}^{2}}+{{y}^{2}}={{r}^{2}}$.
From the relations we get $\cos \theta =\dfrac{x}{r}$.
We now replace the value of $\cos \theta =\dfrac{x}{r}$ in the equation $r=2-2\cos \theta $ to get
\[\begin{align}
& r=2-2\cos \theta \\
& \Rightarrow r=2-2\left( \dfrac{x}{r} \right) \\
& \Rightarrow r+\dfrac{2x}{r}=2 \\
\end{align}\]
We now take the square value of the equation \[r+\dfrac{2x}{r}=2\].
Taking square, we get
\[\begin{align}
& {{\left( r+\dfrac{2x}{r} \right)}^{2}}={{2}^{2}} \\
& \Rightarrow {{r}^{2}}+4x+\dfrac{4{{x}^{2}}}{{{r}^{2}}}=4 \\
\end{align}\]
We now replace the value of ${{x}^{2}}+{{y}^{2}}={{r}^{2}}$ for the equation.
The revised equation becomes \[\left( {{x}^{2}}+{{y}^{2}} \right)+4x+\dfrac{4{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}=4\].
Note:
In case of points for cartesian form we use x and y coordinates as $\left( x,y \right)$ to express their position in the cartesian plane. The distance from origin is $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$. This r represents the distance in polar form.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

