Answer
Verified
423.6k+ views
Hint: This type of question is based on the concept of integration. First we have to simplify the given function by multiplying \[{{e}^{-x}}\] in both the numerator and denominator. Then, use the power rule \[{{a}^{n}}{{a}^{m}}={{a}^{n+m}}\]. Add and subtract \[{{e}^{-x}}\]in the numerator of the function. Take \[{{e}^{-x}}\] common from the first two terms of the numerator. Then, using the property \[\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}\], spilt the function into two parts and cancel the common terms. Integrate the functions separately and find the required answer.
Complete step by step solution:
According to the question, we are asked to find \[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}\].
We have been given the function is \[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}\]. --------(1)
Let us first multiply \[{{e}^{-x}}\] in both the numerator and denominator.
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\times {{e}^{-x}}}{\left( {{e}^{x}}+1 \right){{e}^{-x}}}\]
Using distributive property \[\left( a+b \right)c=ac+bc\] in the numerator, we get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\times {{e}^{-x}}}{{{e}^{x}}\times {{e}^{-x}}+{{e}^{-x}}}\]
We know that \[{{a}^{n}}{{a}^{m}}={{a}^{n+m}}\]. Let us use this property in the numerator and denominator.
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x-x}}}{{{e}^{x-x}}+{{e}^{-x}}}\]
On further simplification, we get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}}{{{e}^{0}}+{{e}^{-x}}}\]
We know that any term power 0 is 1.
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}}{1+{{e}^{-x}}}\]
Now, let is add and subtract \[{{e}^{-x}}\] in the numerator. We get
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}+{{e}^{-x}}-{{e}^{-x}}}{1+{{e}^{-x}}}\]
Take \[{{e}^{-x}}\] from the first two terms of the numerator. We get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( {{e}^{-x}}+1 \right)-{{e}^{-x}}}{1+{{e}^{-x}}}\]
Let us now use the property \[\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}\] to split the function into two parts.
Therefore, we get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( {{e}^{-x}}+1 \right)}{1+{{e}^{-x}}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}\]
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( 1+{{e}^{-x}} \right)}{1+{{e}^{-x}}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}\]
We find that \[1+{{e}^{-x}}\] is common in the first part of the RHS. On cancelling \[1+{{e}^{-x}}\], we get
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}={{e}^{-x}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}\]
Now, let us integrate the functions in two parts.
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx=\int{\left[ {{e}^{-x}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}} \right]}dx}\]
Using the subtraction rule of integration \[\int{\left( u-v \right)dx=\int{udx-\int{vdx}}}\], we get
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx=\int{{{e}^{-x}}}dx}-\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}\] ----------(2)
Let us first solve \[\int{{{e}^{-x}}}dx\].
We know that \[\int{{{e}^{-x}}}dx=-{{e}^{-x}}+{{c}_{1}}\]. Therefore, we get
\[\int{{{e}^{-x}}}dx=-{{e}^{-x}}+{{c}_{1}}\]
Now, consider \[\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}\].
Let us assume \[u=1+{{e}^{-x}}\].
Differentiate u with respect to x.
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( 1+{{e}^{-x}} \right)\]
\[\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{e}^{-x}} \right)\]
We know that differentiation of a constant is zero. Therefore, we get
\[\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{e}^{-x}} \right)\]
We know that \[\dfrac{d}{dx}\left( {{e}^{-x}} \right)=-{{e}^{-x}}\].
Therefore, we get
\[\dfrac{du}{dx}=-{{e}^{-x}}\]
\[\therefore du=-{{e}^{-x}}dx\]
Substituting du in the numerator and u in the denominator, we get
\[\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}=\int{\dfrac{-1}{u}du}\]
We know that \[\int{\dfrac{1}{x}}dx=\log x+c\]. Using this rule of integration, we get
\[\int{\dfrac{-1}{u}du}=-\log u+{{c}_{2}}\]
But we know \[u=1+{{e}^{-x}}\]. Therefore, we get
\[\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}=-\log \left( 1+{{e}^{-x}} \right)+{{c}_{2}}\]
Substitute this value in the equation (2).
We get
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+{{c}_{1}}-\left[ -\log \left( 1+{{e}^{-x}} \right)+{{c}_{2}} \right]\]
On taking out the constant, we get
\[\Rightarrow \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+{{c}_{1}}+\log \left( 1+{{e}^{-x}} \right)-{{c}_{2}}\]
\[\Rightarrow \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( 1+{{e}^{-x}} \right)+{{c}_{1}}-{{c}_{2}}\]
Let us assume that \[{{c}_{1}}-{{c}_{2}}=c\].
\[\therefore \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( 1+{{e}^{-x}} \right)+c\] -----------(3)
But we can write \[{{e}^{-x}}=\dfrac{1}{{{e}^{x}}}\].
Therefore, \[\log \left( 1+{{e}^{-x}} \right)=\log \left( 1+\dfrac{1}{{{e}^{x}}} \right)\].
Let us take LCM. We het
\[\log \left( 1+{{e}^{-x}} \right)=\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)\]
Substitute this value in the equation (3).
We get
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)+c\]
\[\therefore \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)-{{e}^{-x}}+c\]
Hence, the integration of \[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}\] with respect to x is \[\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)-{{e}^{-x}}+c\].
Note: Whenever we get this type of question, we have to simplify the given function to a simplified form for easy integration. We have to know that integration of \[\dfrac{1}{x}\] is logx. Avoid calculation mistakes based on sign convention. Also be thorough with the rules and properties of logarithm and exponential functions.
Complete step by step solution:
According to the question, we are asked to find \[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}\].
We have been given the function is \[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}\]. --------(1)
Let us first multiply \[{{e}^{-x}}\] in both the numerator and denominator.
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\times {{e}^{-x}}}{\left( {{e}^{x}}+1 \right){{e}^{-x}}}\]
Using distributive property \[\left( a+b \right)c=ac+bc\] in the numerator, we get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\times {{e}^{-x}}}{{{e}^{x}}\times {{e}^{-x}}+{{e}^{-x}}}\]
We know that \[{{a}^{n}}{{a}^{m}}={{a}^{n+m}}\]. Let us use this property in the numerator and denominator.
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x-x}}}{{{e}^{x-x}}+{{e}^{-x}}}\]
On further simplification, we get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}}{{{e}^{0}}+{{e}^{-x}}}\]
We know that any term power 0 is 1.
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}}{1+{{e}^{-x}}}\]
Now, let is add and subtract \[{{e}^{-x}}\] in the numerator. We get
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-2x}}+{{e}^{-x}}-{{e}^{-x}}}{1+{{e}^{-x}}}\]
Take \[{{e}^{-x}}\] from the first two terms of the numerator. We get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( {{e}^{-x}}+1 \right)-{{e}^{-x}}}{1+{{e}^{-x}}}\]
Let us now use the property \[\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}\] to split the function into two parts.
Therefore, we get
\[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( {{e}^{-x}}+1 \right)}{1+{{e}^{-x}}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}\]
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}=\dfrac{{{e}^{-x}}\left( 1+{{e}^{-x}} \right)}{1+{{e}^{-x}}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}\]
We find that \[1+{{e}^{-x}}\] is common in the first part of the RHS. On cancelling \[1+{{e}^{-x}}\], we get
\[\Rightarrow \dfrac{{{e}^{-x}}}{{{e}^{x}}+1}={{e}^{-x}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}\]
Now, let us integrate the functions in two parts.
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx=\int{\left[ {{e}^{-x}}-\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}} \right]}dx}\]
Using the subtraction rule of integration \[\int{\left( u-v \right)dx=\int{udx-\int{vdx}}}\], we get
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx=\int{{{e}^{-x}}}dx}-\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}\] ----------(2)
Let us first solve \[\int{{{e}^{-x}}}dx\].
We know that \[\int{{{e}^{-x}}}dx=-{{e}^{-x}}+{{c}_{1}}\]. Therefore, we get
\[\int{{{e}^{-x}}}dx=-{{e}^{-x}}+{{c}_{1}}\]
Now, consider \[\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}\].
Let us assume \[u=1+{{e}^{-x}}\].
Differentiate u with respect to x.
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( 1+{{e}^{-x}} \right)\]
\[\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{e}^{-x}} \right)\]
We know that differentiation of a constant is zero. Therefore, we get
\[\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{e}^{-x}} \right)\]
We know that \[\dfrac{d}{dx}\left( {{e}^{-x}} \right)=-{{e}^{-x}}\].
Therefore, we get
\[\dfrac{du}{dx}=-{{e}^{-x}}\]
\[\therefore du=-{{e}^{-x}}dx\]
Substituting du in the numerator and u in the denominator, we get
\[\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}=\int{\dfrac{-1}{u}du}\]
We know that \[\int{\dfrac{1}{x}}dx=\log x+c\]. Using this rule of integration, we get
\[\int{\dfrac{-1}{u}du}=-\log u+{{c}_{2}}\]
But we know \[u=1+{{e}^{-x}}\]. Therefore, we get
\[\int{\dfrac{{{e}^{-x}}}{1+{{e}^{-x}}}dx}=-\log \left( 1+{{e}^{-x}} \right)+{{c}_{2}}\]
Substitute this value in the equation (2).
We get
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+{{c}_{1}}-\left[ -\log \left( 1+{{e}^{-x}} \right)+{{c}_{2}} \right]\]
On taking out the constant, we get
\[\Rightarrow \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+{{c}_{1}}+\log \left( 1+{{e}^{-x}} \right)-{{c}_{2}}\]
\[\Rightarrow \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( 1+{{e}^{-x}} \right)+{{c}_{1}}-{{c}_{2}}\]
Let us assume that \[{{c}_{1}}-{{c}_{2}}=c\].
\[\therefore \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( 1+{{e}^{-x}} \right)+c\] -----------(3)
But we can write \[{{e}^{-x}}=\dfrac{1}{{{e}^{x}}}\].
Therefore, \[\log \left( 1+{{e}^{-x}} \right)=\log \left( 1+\dfrac{1}{{{e}^{x}}} \right)\].
Let us take LCM. We het
\[\log \left( 1+{{e}^{-x}} \right)=\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)\]
Substitute this value in the equation (3).
We get
\[\int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=-{{e}^{-x}}+\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)+c\]
\[\therefore \int{\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}dx}=\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)-{{e}^{-x}}+c\]
Hence, the integration of \[\dfrac{{{e}^{-x}}}{{{e}^{x}}+1}\] with respect to x is \[\log \left( \dfrac{{{e}^{x}}+1}{{{e}^{x}}} \right)-{{e}^{-x}}+c\].
Note: Whenever we get this type of question, we have to simplify the given function to a simplified form for easy integration. We have to know that integration of \[\dfrac{1}{x}\] is logx. Avoid calculation mistakes based on sign convention. Also be thorough with the rules and properties of logarithm and exponential functions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE