Answer

Verified

416.1k+ views

**Hint:**Binomial theorem is a method used to expand a binomial term that is raise to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.

**Formula used:**${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,

where x and y are real numbers and n is a positive integer (a natural number).

${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$

**Complete step-by-step solution:**

Let us first understand what is the binomial theorem.

Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer.

According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.

Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).

Then, the binomial expansion of the above expression is given as ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$.

Here, i is a natural number taking values from 0 to n.

When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.

In the given question, $n=5$,

Therefore, the given expression can expanded, with the help of binomial theorem as

$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5-0}}{{(1)}^{0}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{5-1}}{{(1)}^{1}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{5-2}}{{(1)}^{2}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{5-3}}{{(1)}^{3}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{5-4}}{{(1)}^{4}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{5-5}}{{(1)}^{5}}$

This equation can be further simplified to

$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{4}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{3}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{2}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{1}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{0}}$

$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}(32{{x}^{15}})+{}^{5}{{C}_{1}}(16{{x}^{12}})+{}^{5}{{C}_{2}}(8{{x}^{9}})+{}^{5}{{C}_{3}}(4{{x}^{6}})+{}^{5}{{C}_{4}}(2{{x}^{3}})+{}^{5}{{C}_{5}}(1)$ ….. (i)

Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$

Therefore, equation (i) can be simplified to

$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{0!(5-0)!}(32{{x}^{15}})-\dfrac{5!}{1!(5-1)!}(16{{x}^{12}})+\dfrac{5!}{2!(5-2)!}(8{{x}^{9}})-\dfrac{5!}{3!(5-3)!}(4{{x}^{6}})+\dfrac{5!}{4!(5-4)!}(2{{x}^{3}})+\dfrac{5!}{5!(5-5)!}$

With this, we get that

$\Rightarrow{{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{5!}(32{{x}^{15}})+\dfrac{5!}{1!(4)!}(16{{x}^{12}})+\dfrac{5!}{2!(3)!}(8{{x}^{9}})+\dfrac{5!}{3!(2)!}(4{{x}^{6}})+\dfrac{5!}{4!(1)!}(2{{x}^{3}})+\dfrac{5!}{5!(0)!}$

$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}-(5)(16{{x}^{12}})+\left( \dfrac{5\times 4}{2} \right)(8{{x}^{9}})+\left( \dfrac{5\times 4\times 3}{3\times 2} \right)(4{{x}^{6}})+(5)(2{{x}^{3}})+1$

Finally,

$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}+80{{x}^{12}})+80{{x}^{9}}+40{{x}^{6}}+10{{x}^{3}})+1$

Hence, we found the expansion of the given expression with the help of binomial theorem.

**Note:**Note that when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

What percentage of the solar systems mass is found class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE