
How do you expand ${{\left( 2{{x}^{3}}+1 \right)}^{5}}$?
Answer
489k+ views
Hint: Binomial theorem is a method used to expand a binomial term that is raise to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Formula used: ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step-by-step solution:
Let us first understand what is the binomial theorem.
Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer.
According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$.
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=5$,
Therefore, the given expression can expanded, with the help of binomial theorem as
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5-0}}{{(1)}^{0}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{5-1}}{{(1)}^{1}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{5-2}}{{(1)}^{2}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{5-3}}{{(1)}^{3}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{5-4}}{{(1)}^{4}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{5-5}}{{(1)}^{5}}$
This equation can be further simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{4}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{3}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{2}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{1}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{0}}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}(32{{x}^{15}})+{}^{5}{{C}_{1}}(16{{x}^{12}})+{}^{5}{{C}_{2}}(8{{x}^{9}})+{}^{5}{{C}_{3}}(4{{x}^{6}})+{}^{5}{{C}_{4}}(2{{x}^{3}})+{}^{5}{{C}_{5}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{0!(5-0)!}(32{{x}^{15}})-\dfrac{5!}{1!(5-1)!}(16{{x}^{12}})+\dfrac{5!}{2!(5-2)!}(8{{x}^{9}})-\dfrac{5!}{3!(5-3)!}(4{{x}^{6}})+\dfrac{5!}{4!(5-4)!}(2{{x}^{3}})+\dfrac{5!}{5!(5-5)!}$
With this, we get that
$\Rightarrow{{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{5!}(32{{x}^{15}})+\dfrac{5!}{1!(4)!}(16{{x}^{12}})+\dfrac{5!}{2!(3)!}(8{{x}^{9}})+\dfrac{5!}{3!(2)!}(4{{x}^{6}})+\dfrac{5!}{4!(1)!}(2{{x}^{3}})+\dfrac{5!}{5!(0)!}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}-(5)(16{{x}^{12}})+\left( \dfrac{5\times 4}{2} \right)(8{{x}^{9}})+\left( \dfrac{5\times 4\times 3}{3\times 2} \right)(4{{x}^{6}})+(5)(2{{x}^{3}})+1$
Finally,
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}+80{{x}^{12}})+80{{x}^{9}}+40{{x}^{6}}+10{{x}^{3}})+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note: Note that when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Formula used: ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step-by-step solution:
Let us first understand what is the binomial theorem.
Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer.
According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$.
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=5$,
Therefore, the given expression can expanded, with the help of binomial theorem as
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5-0}}{{(1)}^{0}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{5-1}}{{(1)}^{1}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{5-2}}{{(1)}^{2}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{5-3}}{{(1)}^{3}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{5-4}}{{(1)}^{4}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{5-5}}{{(1)}^{5}}$
This equation can be further simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{4}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{3}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{2}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{1}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{0}}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}(32{{x}^{15}})+{}^{5}{{C}_{1}}(16{{x}^{12}})+{}^{5}{{C}_{2}}(8{{x}^{9}})+{}^{5}{{C}_{3}}(4{{x}^{6}})+{}^{5}{{C}_{4}}(2{{x}^{3}})+{}^{5}{{C}_{5}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{0!(5-0)!}(32{{x}^{15}})-\dfrac{5!}{1!(5-1)!}(16{{x}^{12}})+\dfrac{5!}{2!(5-2)!}(8{{x}^{9}})-\dfrac{5!}{3!(5-3)!}(4{{x}^{6}})+\dfrac{5!}{4!(5-4)!}(2{{x}^{3}})+\dfrac{5!}{5!(5-5)!}$
With this, we get that
$\Rightarrow{{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{5!}(32{{x}^{15}})+\dfrac{5!}{1!(4)!}(16{{x}^{12}})+\dfrac{5!}{2!(3)!}(8{{x}^{9}})+\dfrac{5!}{3!(2)!}(4{{x}^{6}})+\dfrac{5!}{4!(1)!}(2{{x}^{3}})+\dfrac{5!}{5!(0)!}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}-(5)(16{{x}^{12}})+\left( \dfrac{5\times 4}{2} \right)(8{{x}^{9}})+\left( \dfrac{5\times 4\times 3}{3\times 2} \right)(4{{x}^{6}})+(5)(2{{x}^{3}})+1$
Finally,
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}+80{{x}^{12}})+80{{x}^{9}}+40{{x}^{6}}+10{{x}^{3}})+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note: Note that when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
