
Given the probability that A can solve a problem is $\dfrac{2}{3}$ and the probability that B can solve the same problem is $\dfrac{3}{5}$. Find the probability that none of two will be able to solve the problem.
Answer
605.1k+ views
Hint: Here we solve the problem by finding the individual probability of events for not solving the problem because here the events have solved the problem individually. If suppose $p(x)$is the probability of solving some x work then 1-p(x) will be the probability for not solving work.
Complete step-by-step answer:
Now here let us consider that A be an event that solves problem A and also B be an event that solves problem B.
According to the data we can say that
Probability that the event A can solve problem A is $\dfrac{2}{3}$ $ \Rightarrow P(A) = \dfrac{2}{3}$
Probability that the event B can solve the problem B is$\dfrac{3}{5}$ $ \Rightarrow P(B) = \dfrac{3}{5}$
Here we have to find the probability that none of two will be able to solve the problem.
So here we have to find the value of $P(\bar A.\bar B)$.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
Since we know that the event A and B has solved the problem individually so we should also find their individual probability of not solving the problem.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
$ \Rightarrow P(\bar A.\bar B) = (1 - P(A))(1 - P(B))$
$ \Rightarrow P(\bar A.\bar B) = \left( {1 - \dfrac{2}{3}} \right)\left( {1 - \dfrac{3}{5}} \right)$
$ \Rightarrow P(\bar A\bar B) = \dfrac{1}{3} \times \dfrac{2}{5}$
$ \Rightarrow P(\bar A\bar B) = \dfrac{2}{{15}}$
Therefore the probability that none of the two events A and B will be able to solve the problem = $\dfrac{2}{{15}}$.
Note: In this problem there are two events A and First we have to observe that event A and event B are working independently, which means the probability of event A solving (or not solving) the problem is entirely independent of the probability of event B solving (or not solving) the problem. Based on this we have to find the values and use them according to it.
Complete step-by-step answer:
Now here let us consider that A be an event that solves problem A and also B be an event that solves problem B.
According to the data we can say that
Probability that the event A can solve problem A is $\dfrac{2}{3}$ $ \Rightarrow P(A) = \dfrac{2}{3}$
Probability that the event B can solve the problem B is$\dfrac{3}{5}$ $ \Rightarrow P(B) = \dfrac{3}{5}$
Here we have to find the probability that none of two will be able to solve the problem.
So here we have to find the value of $P(\bar A.\bar B)$.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
Since we know that the event A and B has solved the problem individually so we should also find their individual probability of not solving the problem.
\[ \Rightarrow P(\bar A.\bar B) = P(\bar A)P(\bar B)\]
$ \Rightarrow P(\bar A.\bar B) = (1 - P(A))(1 - P(B))$
$ \Rightarrow P(\bar A.\bar B) = \left( {1 - \dfrac{2}{3}} \right)\left( {1 - \dfrac{3}{5}} \right)$
$ \Rightarrow P(\bar A\bar B) = \dfrac{1}{3} \times \dfrac{2}{5}$
$ \Rightarrow P(\bar A\bar B) = \dfrac{2}{{15}}$
Therefore the probability that none of the two events A and B will be able to solve the problem = $\dfrac{2}{{15}}$.
Note: In this problem there are two events A and First we have to observe that event A and event B are working independently, which means the probability of event A solving (or not solving) the problem is entirely independent of the probability of event B solving (or not solving) the problem. Based on this we have to find the values and use them according to it.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

