
Given the points $A\left( -2,3,4 \right)$ , $B\left( 3,2,5 \right)$ , $C\left( 1,-1,2 \right)$ and $D\left( 3,2,-4 \right)$ . The projection of the vector $\overrightarrow{AB}$ on the vector $\overrightarrow{CD}$ is
(A) $\dfrac{22}{3}$
(B) $\dfrac{-21}{4}$
(C) $\dfrac{1}{7}$
(D) $-47$
Answer
573.6k+ views
Hint: For answering this question we will identify the directional rations of both the lines $\overrightarrow{AB}$ and $\overrightarrow{CD}$ . The directional ratios of a line joining $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given as $\left( {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}},{{z}_{2}}-{{z}_{1}} \right)$ . The projection of the vector $\overrightarrow{AB}$ on the vector $\overrightarrow{CD}$ is given by the dot product of the directional ratios of both the lines divided by the length of $\overrightarrow{CD}$ .
Complete step by step answer:
Now considering from the question we have $A\left( -2,3,4 \right)$ , $B\left( 3,2,5 \right)$ , $C\left( 1,-1,2 \right)$ and $D\left( 3,2,-4 \right)$ .
We know that from the basic concept that the projection of the vector $\overrightarrow{AB}$ on the vector $\overrightarrow{CD}$ is given by the dot product of the directional ratios of both the lines divided by the length of $\overrightarrow{CD}$ .
The directional ratios of a line joining $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given as $\left( {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}},{{z}_{2}}-{{z}_{1}} \right)$ .
So here the directional ratio of $\overrightarrow{AB}$ is given as $\left( 3-\left( -2 \right),2-3,5-4 \right)=\left( 5,-1,1 \right)$ .
The directional ratio of $\overrightarrow{CD}$ is given as $\left( 3-1,2-\left( -1 \right),-4-\left( 2 \right) \right)=\left( 2,3,-6 \right)$ .
The dot product of the directional ratios of $\overrightarrow{AB}$ and $\overrightarrow{CD}$ that is$\left( 5,-1,1 \right).\left( 2,3,-6 \right)=\left( 10-3-6 \right)=1$ .
The magnitude of the line $\overrightarrow{CD}$ is given as $\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{4+9+36}=\sqrt{49}=7$ .
Hence the projection of the vector $\overrightarrow{AB}$ on the vector $\overrightarrow{CD}$ is given as $\dfrac{1}{7}$ .
So, the correct answer is “Option C”.
Note: While answering questions of this type we should make a note that when projecting $\overrightarrow{AB}$ on $\overrightarrow{CD}$ we should take the ratio of dot product of the directional ratios of both the lines and the length of $\overrightarrow{CD}$ . For projection of $\overrightarrow{CD}$ on $\overrightarrow{AB}$ we should take the ratio of dot product of the directional ratios of both the lines and the length of $\overrightarrow{AB}$ . If we take the other by mistake we will encounter the wrong answer.
Complete step by step answer:
Now considering from the question we have $A\left( -2,3,4 \right)$ , $B\left( 3,2,5 \right)$ , $C\left( 1,-1,2 \right)$ and $D\left( 3,2,-4 \right)$ .
We know that from the basic concept that the projection of the vector $\overrightarrow{AB}$ on the vector $\overrightarrow{CD}$ is given by the dot product of the directional ratios of both the lines divided by the length of $\overrightarrow{CD}$ .
The directional ratios of a line joining $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ is given as $\left( {{x}_{2}}-{{x}_{1}},{{y}_{2}}-{{y}_{1}},{{z}_{2}}-{{z}_{1}} \right)$ .
So here the directional ratio of $\overrightarrow{AB}$ is given as $\left( 3-\left( -2 \right),2-3,5-4 \right)=\left( 5,-1,1 \right)$ .
The directional ratio of $\overrightarrow{CD}$ is given as $\left( 3-1,2-\left( -1 \right),-4-\left( 2 \right) \right)=\left( 2,3,-6 \right)$ .
The dot product of the directional ratios of $\overrightarrow{AB}$ and $\overrightarrow{CD}$ that is$\left( 5,-1,1 \right).\left( 2,3,-6 \right)=\left( 10-3-6 \right)=1$ .
The magnitude of the line $\overrightarrow{CD}$ is given as $\sqrt{{{\left( 2 \right)}^{2}}+{{\left( 3 \right)}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{4+9+36}=\sqrt{49}=7$ .
Hence the projection of the vector $\overrightarrow{AB}$ on the vector $\overrightarrow{CD}$ is given as $\dfrac{1}{7}$ .
So, the correct answer is “Option C”.
Note: While answering questions of this type we should make a note that when projecting $\overrightarrow{AB}$ on $\overrightarrow{CD}$ we should take the ratio of dot product of the directional ratios of both the lines and the length of $\overrightarrow{CD}$ . For projection of $\overrightarrow{CD}$ on $\overrightarrow{AB}$ we should take the ratio of dot product of the directional ratios of both the lines and the length of $\overrightarrow{AB}$ . If we take the other by mistake we will encounter the wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

