# Given that E and F are events such that \[P\left( E \right)=0.6,P\left( F \right)=0.3,P\left( E\cap F \right)=0.2\], find \[6P\left( F|E \right)\].

Answer

Verified

362.7k+ views

Hint: Use the formula for calculating the conditional probability of two given events which is \[P\left( F|E \right)=\dfrac{P\left( E\cap F \right)}{P\left( E \right)}\] and substitute the values of given probability of events.

We have two events \[E\] and \[F\] such that \[P\left( E \right)=0.6,P\left( F \right)=0.3,P\left( E\cap F \right)=0.2\]. We have to find the value of \[6P\left( F|E \right)\].

We will first evaluate the value of the conditional probability \[P\left( F|E \right)\] which is the probability of occurrence of event \[F\] given that the event \[E\] has already occurred.

We will use the formula for conditional probability which says that \[P\left( F|E \right)=\dfrac{P\left( E\cap F \right)}{P\left( E \right)}\].

Substituting the values \[P\left( E \right)=0.6,P\left( E\cap F \right)=0.2\] in the above formula, we get \[P\left( F|E \right)=\dfrac{P\left( E\cap F \right)}{P\left( E \right)}=\dfrac{0.2}{0.6}=\dfrac{2}{6}=\dfrac{1}{3}\].

Thus, we have \[P\left( F|E \right)=\dfrac{1}{3}\].

We now have to calculate \[6P\left( F|E \right)\]. Thus, we have \[6P\left( F|E \right)=6\left( \dfrac{1}{3} \right)=2\].

Hence, we have \[6P\left( F|E \right)=2\].

Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. We must remember that the sum of probability of occurrence of some event and probability of non-occurrence of the same event is always \[1\].

Note: Conditional probability is a measure of the probability of occurrence of an event given that another event has occurred. \[P\left( A|B \right)\] measures the occurrence of event \[A\] given that event \[B\] has already occurred. If \[A\] and \[B\] are two independent events (which means that the probability of occurrence or non-occurrence of one event doesn’t affect the probability of occurring or non-occurring of the other event), then \[P\left( A|B \right)\] is simply the probability of occurrence of event \[A\], i.e. \[P\left( A \right)\].

We have two events \[E\] and \[F\] such that \[P\left( E \right)=0.6,P\left( F \right)=0.3,P\left( E\cap F \right)=0.2\]. We have to find the value of \[6P\left( F|E \right)\].

We will first evaluate the value of the conditional probability \[P\left( F|E \right)\] which is the probability of occurrence of event \[F\] given that the event \[E\] has already occurred.

We will use the formula for conditional probability which says that \[P\left( F|E \right)=\dfrac{P\left( E\cap F \right)}{P\left( E \right)}\].

Substituting the values \[P\left( E \right)=0.6,P\left( E\cap F \right)=0.2\] in the above formula, we get \[P\left( F|E \right)=\dfrac{P\left( E\cap F \right)}{P\left( E \right)}=\dfrac{0.2}{0.6}=\dfrac{2}{6}=\dfrac{1}{3}\].

Thus, we have \[P\left( F|E \right)=\dfrac{1}{3}\].

We now have to calculate \[6P\left( F|E \right)\]. Thus, we have \[6P\left( F|E \right)=6\left( \dfrac{1}{3} \right)=2\].

Hence, we have \[6P\left( F|E \right)=2\].

Probability of any event describes how likely an event is to occur or how likely it is that a proposition is true. The value of probability of any event always lies in the range \[\left[ 0,1 \right]\] where having \[0\] probability indicates that the event is impossible to happen, while having probability equal to \[1\] indicates that the event will surely happen. We must remember that the sum of probability of occurrence of some event and probability of non-occurrence of the same event is always \[1\].

Note: Conditional probability is a measure of the probability of occurrence of an event given that another event has occurred. \[P\left( A|B \right)\] measures the occurrence of event \[A\] given that event \[B\] has already occurred. If \[A\] and \[B\] are two independent events (which means that the probability of occurrence or non-occurrence of one event doesn’t affect the probability of occurring or non-occurring of the other event), then \[P\left( A|B \right)\] is simply the probability of occurrence of event \[A\], i.e. \[P\left( A \right)\].

Last updated date: 27th Sep 2023

•

Total views: 362.7k

•

Views today: 6.62k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE