Answer
Verified
474.6k+ views
Hint: First of all, to find $fg\left( x \right)$, substitute $x=g\left( x \right)$ in $f\left( x \right)$ that it $fg\left( x \right)=\log \dfrac{1+g\left( x \right)}{1-g\left( x \right)}$. Then here put the value of $g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$ and simplifying the equation. Finally, find $fg\left( x \right)$in terms of $f\left( x \right)$.
Complete step-by-step answer:
Here we are given that $f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$. We have to find the value of $fog\left( x \right)$.
Let us first take our given functions that are,
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ \\
& and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \\
\end{align}$
Here we have to find the value of $fog\left( x \right)$or $f\left( g\left( x \right) \right)$.
To find the value of $f\left( g\left( x \right) \right)$, we will have to substitute $x=g\left( x \right)$in expression of $f\left( x \right)$.
So by substituting the value of $x=g\left( x \right)$in expression of $f\left( x \right)$, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+g\left( x \right)}{1-g\left( x \right)} \right]$……………… (1)
As we are given that $g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$, by substituting the value of $g\left( x \right)$in equation (1), we get,
$fg\left( x \right)=\log \left[ \dfrac{1+\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)}{1-\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right]$
By simplifying the above equation, we get,
$fg\left( x \right)=\log \left[ \dfrac{\dfrac{\left( 1+3{{x}^{2}} \right)+\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}}{\dfrac{\left( 1+3{{x}^{2}} \right)-\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}} \right]$
By cancelling the like terms, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+3{{x}^{2}}+3x+{{x}^{3}}}{1+3{{x}^{2}}-3x+{{x}^{3}}} \right]$
We can also write the above equation as,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1 \right)}^{3}}+{{\left( x \right)}^{3}}+3x\left( 1+x \right)}{{{\left( 1 \right)}^{3}}-{{\left( x \right)}^{3}}-3x\left( 1-x \right)} \right]$
We know that, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)and\ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$. Applying these in above equation by taking a = 1 and b = x, we get,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1+x \right)}^{3}}}{{{\left( 1-x \right)}^{3}}} \right]$
We know that $\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}$. By applying this in above equation, we get,
$fg\left( x \right)=\log \left[ {{\left( \dfrac{1+x}{1-x} \right)}^{3}} \right]$
We know that $\log {{a}^{m}}=m\log a$. By applying this in above equation, we get,
$fg\left( x \right)=3\log \left( \dfrac{1+x}{1-x} \right)$
As we are given that $\log \left( \dfrac{1+x}{1-x} \right)=f\left( x \right)$, by substituting the value in above equation, we get,
$fg\left( x \right)=3f\left( x \right)$
Therefore we get $fg\left( x \right)\ or\ fog\left( x \right)\ as\ 3f\left( x \right)$.
Hence option (B) is correct.
Note: Students often confuse between $fog\left( x \right)\ and\ gof\left( x \right)$ and some students even consider them as the same functions. But actually they are different functions. $fog\left( x \right)\ or\ fg\left( x \right)$means, we have to put $x=g\left( x \right)$ in expression of $f\left( x \right)$ whereas $gof\left( x \right)\ and\ gf\left( x \right)$means, we have to put $x=f\left( x \right)$ in expression of $g\left( x \right)$. In some cases, by completely solving $fg\left( x \right)\ and\ gf\left( x \right)$, they may come out to be the same, but generally they are different functions. Also if $fg\left( x \right)\ =gf\left( x \right)$then we can conclude that $f\left( x \right)$and $g\left( x \right)$are inverse of each other.
Complete step-by-step answer:
Here we are given that $f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$. We have to find the value of $fog\left( x \right)$.
Let us first take our given functions that are,
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ \\
& and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \\
\end{align}$
Here we have to find the value of $fog\left( x \right)$or $f\left( g\left( x \right) \right)$.
To find the value of $f\left( g\left( x \right) \right)$, we will have to substitute $x=g\left( x \right)$in expression of $f\left( x \right)$.
So by substituting the value of $x=g\left( x \right)$in expression of $f\left( x \right)$, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+g\left( x \right)}{1-g\left( x \right)} \right]$……………… (1)
As we are given that $g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$, by substituting the value of $g\left( x \right)$in equation (1), we get,
$fg\left( x \right)=\log \left[ \dfrac{1+\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)}{1-\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right]$
By simplifying the above equation, we get,
$fg\left( x \right)=\log \left[ \dfrac{\dfrac{\left( 1+3{{x}^{2}} \right)+\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}}{\dfrac{\left( 1+3{{x}^{2}} \right)-\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}} \right]$
By cancelling the like terms, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+3{{x}^{2}}+3x+{{x}^{3}}}{1+3{{x}^{2}}-3x+{{x}^{3}}} \right]$
We can also write the above equation as,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1 \right)}^{3}}+{{\left( x \right)}^{3}}+3x\left( 1+x \right)}{{{\left( 1 \right)}^{3}}-{{\left( x \right)}^{3}}-3x\left( 1-x \right)} \right]$
We know that, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)and\ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$. Applying these in above equation by taking a = 1 and b = x, we get,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1+x \right)}^{3}}}{{{\left( 1-x \right)}^{3}}} \right]$
We know that $\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}$. By applying this in above equation, we get,
$fg\left( x \right)=\log \left[ {{\left( \dfrac{1+x}{1-x} \right)}^{3}} \right]$
We know that $\log {{a}^{m}}=m\log a$. By applying this in above equation, we get,
$fg\left( x \right)=3\log \left( \dfrac{1+x}{1-x} \right)$
As we are given that $\log \left( \dfrac{1+x}{1-x} \right)=f\left( x \right)$, by substituting the value in above equation, we get,
$fg\left( x \right)=3f\left( x \right)$
Therefore we get $fg\left( x \right)\ or\ fog\left( x \right)\ as\ 3f\left( x \right)$.
Hence option (B) is correct.
Note: Students often confuse between $fog\left( x \right)\ and\ gof\left( x \right)$ and some students even consider them as the same functions. But actually they are different functions. $fog\left( x \right)\ or\ fg\left( x \right)$means, we have to put $x=g\left( x \right)$ in expression of $f\left( x \right)$ whereas $gof\left( x \right)\ and\ gf\left( x \right)$means, we have to put $x=f\left( x \right)$ in expression of $g\left( x \right)$. In some cases, by completely solving $fg\left( x \right)\ and\ gf\left( x \right)$, they may come out to be the same, but generally they are different functions. Also if $fg\left( x \right)\ =gf\left( x \right)$then we can conclude that $f\left( x \right)$and $g\left( x \right)$are inverse of each other.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE