
Given $f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}},fog\left( x \right)$equals
A. $-f\left( x \right)$
B. $3f\left( x \right)$
C. ${{\left[ f\left( x \right) \right]}^{3}}$
D. None of these
Answer
620.1k+ views
Hint: First of all, to find $fg\left( x \right)$, substitute $x=g\left( x \right)$ in $f\left( x \right)$ that it $fg\left( x \right)=\log \dfrac{1+g\left( x \right)}{1-g\left( x \right)}$. Then here put the value of $g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$ and simplifying the equation. Finally, find $fg\left( x \right)$in terms of $f\left( x \right)$.
Complete step-by-step answer:
Here we are given that $f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$. We have to find the value of $fog\left( x \right)$.
Let us first take our given functions that are,
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ \\
& and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \\
\end{align}$
Here we have to find the value of $fog\left( x \right)$or $f\left( g\left( x \right) \right)$.
To find the value of $f\left( g\left( x \right) \right)$, we will have to substitute $x=g\left( x \right)$in expression of $f\left( x \right)$.
So by substituting the value of $x=g\left( x \right)$in expression of $f\left( x \right)$, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+g\left( x \right)}{1-g\left( x \right)} \right]$……………… (1)
As we are given that $g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$, by substituting the value of $g\left( x \right)$in equation (1), we get,
$fg\left( x \right)=\log \left[ \dfrac{1+\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)}{1-\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right]$
By simplifying the above equation, we get,
$fg\left( x \right)=\log \left[ \dfrac{\dfrac{\left( 1+3{{x}^{2}} \right)+\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}}{\dfrac{\left( 1+3{{x}^{2}} \right)-\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}} \right]$
By cancelling the like terms, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+3{{x}^{2}}+3x+{{x}^{3}}}{1+3{{x}^{2}}-3x+{{x}^{3}}} \right]$
We can also write the above equation as,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1 \right)}^{3}}+{{\left( x \right)}^{3}}+3x\left( 1+x \right)}{{{\left( 1 \right)}^{3}}-{{\left( x \right)}^{3}}-3x\left( 1-x \right)} \right]$
We know that, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)and\ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$. Applying these in above equation by taking a = 1 and b = x, we get,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1+x \right)}^{3}}}{{{\left( 1-x \right)}^{3}}} \right]$
We know that $\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}$. By applying this in above equation, we get,
$fg\left( x \right)=\log \left[ {{\left( \dfrac{1+x}{1-x} \right)}^{3}} \right]$
We know that $\log {{a}^{m}}=m\log a$. By applying this in above equation, we get,
$fg\left( x \right)=3\log \left( \dfrac{1+x}{1-x} \right)$
As we are given that $\log \left( \dfrac{1+x}{1-x} \right)=f\left( x \right)$, by substituting the value in above equation, we get,
$fg\left( x \right)=3f\left( x \right)$
Therefore we get $fg\left( x \right)\ or\ fog\left( x \right)\ as\ 3f\left( x \right)$.
Hence option (B) is correct.
Note: Students often confuse between $fog\left( x \right)\ and\ gof\left( x \right)$ and some students even consider them as the same functions. But actually they are different functions. $fog\left( x \right)\ or\ fg\left( x \right)$means, we have to put $x=g\left( x \right)$ in expression of $f\left( x \right)$ whereas $gof\left( x \right)\ and\ gf\left( x \right)$means, we have to put $x=f\left( x \right)$ in expression of $g\left( x \right)$. In some cases, by completely solving $fg\left( x \right)\ and\ gf\left( x \right)$, they may come out to be the same, but generally they are different functions. Also if $fg\left( x \right)\ =gf\left( x \right)$then we can conclude that $f\left( x \right)$and $g\left( x \right)$are inverse of each other.
Complete step-by-step answer:
Here we are given that $f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$. We have to find the value of $fog\left( x \right)$.
Let us first take our given functions that are,
$\begin{align}
& f\left( x \right)=\log \left( \dfrac{1+x}{1-x} \right)\ \\
& and\ g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \\
\end{align}$
Here we have to find the value of $fog\left( x \right)$or $f\left( g\left( x \right) \right)$.
To find the value of $f\left( g\left( x \right) \right)$, we will have to substitute $x=g\left( x \right)$in expression of $f\left( x \right)$.
So by substituting the value of $x=g\left( x \right)$in expression of $f\left( x \right)$, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+g\left( x \right)}{1-g\left( x \right)} \right]$……………… (1)
As we are given that $g\left( x \right)=\dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}}$, by substituting the value of $g\left( x \right)$in equation (1), we get,
$fg\left( x \right)=\log \left[ \dfrac{1+\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)}{1-\left( \dfrac{3x+{{x}^{3}}}{1+3{{x}^{2}}} \right)} \right]$
By simplifying the above equation, we get,
$fg\left( x \right)=\log \left[ \dfrac{\dfrac{\left( 1+3{{x}^{2}} \right)+\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}}{\dfrac{\left( 1+3{{x}^{2}} \right)-\left( 3x+{{x}^{3}} \right)}{\left( 1+3{{x}^{2}} \right)}} \right]$
By cancelling the like terms, we get,
$fg\left( x \right)=\log \left[ \dfrac{1+3{{x}^{2}}+3x+{{x}^{3}}}{1+3{{x}^{2}}-3x+{{x}^{3}}} \right]$
We can also write the above equation as,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1 \right)}^{3}}+{{\left( x \right)}^{3}}+3x\left( 1+x \right)}{{{\left( 1 \right)}^{3}}-{{\left( x \right)}^{3}}-3x\left( 1-x \right)} \right]$
We know that, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)and\ {{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$. Applying these in above equation by taking a = 1 and b = x, we get,
$fg\left( x \right)=\log \left[ \dfrac{{{\left( 1+x \right)}^{3}}}{{{\left( 1-x \right)}^{3}}} \right]$
We know that $\dfrac{{{a}^{n}}}{{{b}^{n}}}={{\left( \dfrac{a}{b} \right)}^{n}}$. By applying this in above equation, we get,
$fg\left( x \right)=\log \left[ {{\left( \dfrac{1+x}{1-x} \right)}^{3}} \right]$
We know that $\log {{a}^{m}}=m\log a$. By applying this in above equation, we get,
$fg\left( x \right)=3\log \left( \dfrac{1+x}{1-x} \right)$
As we are given that $\log \left( \dfrac{1+x}{1-x} \right)=f\left( x \right)$, by substituting the value in above equation, we get,
$fg\left( x \right)=3f\left( x \right)$
Therefore we get $fg\left( x \right)\ or\ fog\left( x \right)\ as\ 3f\left( x \right)$.
Hence option (B) is correct.
Note: Students often confuse between $fog\left( x \right)\ and\ gof\left( x \right)$ and some students even consider them as the same functions. But actually they are different functions. $fog\left( x \right)\ or\ fg\left( x \right)$means, we have to put $x=g\left( x \right)$ in expression of $f\left( x \right)$ whereas $gof\left( x \right)\ and\ gf\left( x \right)$means, we have to put $x=f\left( x \right)$ in expression of $g\left( x \right)$. In some cases, by completely solving $fg\left( x \right)\ and\ gf\left( x \right)$, they may come out to be the same, but generally they are different functions. Also if $fg\left( x \right)\ =gf\left( x \right)$then we can conclude that $f\left( x \right)$and $g\left( x \right)$are inverse of each other.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

