
Given \[f'\left( x \right) = \dfrac{{\cos x}}{x}\], \[f\left( {\dfrac{\pi }{2}} \right) = a\], and \[f\left( {\dfrac{{3\pi }}{2}} \right) = b\], find the value of \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\].
Answer
232.5k+ views
Hint:
Here, we need to find the value of the definite integral. We will integrate the given function by parts. Then, we will simplify the expression using the given values. We will again substitute the limits into the expressions and simplify the expression to obtain the required value of the integral.
Formula Used: Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will integrate the given definite integral using integration by parts.
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Rewriting the given integral, we get
\[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right) \times 1} dx\]
Let \[u\] be \[f\left( x \right)\] and \[v\] be \[1\].
Therefore, by integrating \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] by parts, we get
\[\begin{array}{l}\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} \times 1dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
We know that the derivative of the function \[f\left( x \right)\] is \[f'\left( x \right)\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {f'\left( x \right) \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\]
Substitute \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] in the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {\dfrac{{\cos x}}{x} \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \int {\cos x} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
Integrating the function \[\cos x\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \sin x} \right]} \right|_{\pi /2}^{3\pi /2}\]
Now, we will substitute the limits into the expressions.
Therefore, we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \sin \dfrac{{3\pi }}{2}} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - \sin \dfrac{\pi }{2}} \right)\]
We know that \[\sin \dfrac{\pi }{2} = 1\] and \[\sin \dfrac{{3\pi }}{2} = - 1\].
Thus, the integral becomes
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \left( { - 1} \right)} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1 - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 1\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 2\end{array}\]
Substituting \[f\left( {\dfrac{\pi }{2}} \right) = a\] and \[f\left( {\dfrac{{3\pi }}{2}} \right) = b\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}b - \dfrac{\pi }{2}a + 2\]
Taking \[\dfrac{\pi }{2}\] common, we get
\[\therefore \int\limits_{\pi /2}^{3\pi /2}{f\left( x \right)}dx=\dfrac{\pi }{2}\left( 3b-a \right)+2\]
Therefore, the value of the definite integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] is \[\dfrac{\pi }{2}\left( {3b - a} \right) + 2\].
Note:
We have used integration by parts to simplify the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. A common mistake we can make is to first integrate \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] to find \[f\left( x \right)\], and then substitute it into the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. We will avoid doing this because \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] cannot be integrated using any elementary functions (it can be integrated in terms of infinite series, using Taylor series expansion of \[\cos x\]).
Here, we need to find the value of the definite integral. We will integrate the given function by parts. Then, we will simplify the expression using the given values. We will again substitute the limits into the expressions and simplify the expression to obtain the required value of the integral.
Formula Used: Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will integrate the given definite integral using integration by parts.
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Rewriting the given integral, we get
\[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right) \times 1} dx\]
Let \[u\] be \[f\left( x \right)\] and \[v\] be \[1\].
Therefore, by integrating \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] by parts, we get
\[\begin{array}{l}\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} \times 1dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
We know that the derivative of the function \[f\left( x \right)\] is \[f'\left( x \right)\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {f'\left( x \right) \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\]
Substitute \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] in the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {\dfrac{{\cos x}}{x} \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \int {\cos x} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
Integrating the function \[\cos x\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \sin x} \right]} \right|_{\pi /2}^{3\pi /2}\]
Now, we will substitute the limits into the expressions.
Therefore, we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \sin \dfrac{{3\pi }}{2}} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - \sin \dfrac{\pi }{2}} \right)\]
We know that \[\sin \dfrac{\pi }{2} = 1\] and \[\sin \dfrac{{3\pi }}{2} = - 1\].
Thus, the integral becomes
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \left( { - 1} \right)} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1 - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 1\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 2\end{array}\]
Substituting \[f\left( {\dfrac{\pi }{2}} \right) = a\] and \[f\left( {\dfrac{{3\pi }}{2}} \right) = b\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}b - \dfrac{\pi }{2}a + 2\]
Taking \[\dfrac{\pi }{2}\] common, we get
\[\therefore \int\limits_{\pi /2}^{3\pi /2}{f\left( x \right)}dx=\dfrac{\pi }{2}\left( 3b-a \right)+2\]
Therefore, the value of the definite integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] is \[\dfrac{\pi }{2}\left( {3b - a} \right) + 2\].
Note:
We have used integration by parts to simplify the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. A common mistake we can make is to first integrate \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] to find \[f\left( x \right)\], and then substitute it into the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. We will avoid doing this because \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] cannot be integrated using any elementary functions (it can be integrated in terms of infinite series, using Taylor series expansion of \[\cos x\]).
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

