Given: A circle, \[2{{x}^{2}}+2{{y}^{2}}=5\] and a parabola, \[{{y}^{2}}=4\sqrt{5}x\].
Statement-I: An equation of a common tangent to these curves is \[y=x+\sqrt{5}x\].
Statement-II: if the line, \[y=mx+\dfrac{\sqrt{5}}{m},\left( m\ne 0 \right)\] is their common
tangent, then m satisfies \[{{m}^{4}}-3{{m}^{2}}+2=0\].
(1) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I.
(2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I.
(3) Statement-I is true, Statement-II is false.
(4) Statement-I is False, Statement-II is true.
Answer
Verified
507.6k+ views
Hint: Consider a tangent expression \[y=mx+\dfrac{a}{m}\] for the given parabola. For being
a common tangent, the tangent expression we created for parabola should also act as
tangent to the circle. Thus, equating the distance between the center of the circle and the
tangent expression will lead us to find the common tangent.
The given circle \[2{{x}^{2}}+2{{y}^{2}}=5\]can be rewritten as:
\[{{x}^{2}}+{{y}^{2}}=\dfrac{5}{2};\]
Therefore, the center of this circle is \[\left( 0,0 \right)\] and the radius is
\[\sqrt{\dfrac{5}{2}}\]units.
For any parabola \[{{y}^{2}}=4ax;\] the tangent of the parabola with slope ‘m’ is considered
as \[y=mx+\dfrac{a}{m}\].
Subsequently, the tangent to the parabola \[{{y}^{2}}=4\sqrt{5}x\] can be taken as:
\[y=mx+\dfrac{\sqrt{5}}{m};\]
Which can be rewritten as:
\[my={{m}^{2}}x+\sqrt{5}\];
As it was mentioned that the parabola and circle have a common tangent:
Then, the distance between \[\left( 0,0 \right)\] and \[my={{m}^{2}}x+\sqrt{5}\] is equal to
the radius of the circle.
Therefore, applying the distance formula,
\[\dfrac{\left| {{m}^{2}}\left( 0 \right)-m\left( 0 \right)+\sqrt{5} \right|}{\sqrt{{{\left(
{{m}^{2}} \right)}^{2}}+{{\left( -m \right)}^{2}}}}=\dfrac{\sqrt{5}}{2}\]
\[\dfrac{\sqrt{5}}{\sqrt{{{m}^{4}}+{{m}^{2}}}}=\dfrac{\sqrt{5}}{2}\]
Now, let us do squaring on both sides to simplify further;
\[2=\left( {{m}^{4}}+{{m}^{2}} \right)\]
\[\Rightarrow {{m}^{4}}+{{m}^{2}}+2=0\]
\[({{m}^{2}}+2)({{m}^{2}}-1)=0\]
\[\therefore {{m}^{2}}=1,{{m}^{2}}=-2\]
As \[{{m}^{2}}=-2\] is not valid, we shall consider \[m=\pm 1\].
So, the common tangents can be:
\[y=x+\sqrt{5}\], by substituting \[m=1\].
\[y=-x-\sqrt{5}\], by substituting \[m=-1\].
Now, for statement II:
On Solving;
\[\begin{align}
& {{m}^{4}}-3{{m}^{2}}+2=0 \\
& {{m}^{4}}-2{{m}^{2}}-{{m}^{2}}+2=0 \\
& \left( {{m}^{2}}-2 \right)\left( {{m}^{2}}-1 \right)=0 \\
\end{align}\]
We do have \[{{m}^{2}}=1\] from this expression, but it is not the same expression as
statement I.
So, both the statements are correct, but statement II is not the correct explanation of
statement I.
Hence, option b is the correct answer.
Note: You may also start the procedure by considering a common tangent expression with
respect to the given circle.
Also, as a square of a number can never be negative, we ignored \[{{m}^{2}}=-2\] as a
solution.
a common tangent, the tangent expression we created for parabola should also act as
tangent to the circle. Thus, equating the distance between the center of the circle and the
tangent expression will lead us to find the common tangent.
The given circle \[2{{x}^{2}}+2{{y}^{2}}=5\]can be rewritten as:
\[{{x}^{2}}+{{y}^{2}}=\dfrac{5}{2};\]
Therefore, the center of this circle is \[\left( 0,0 \right)\] and the radius is
\[\sqrt{\dfrac{5}{2}}\]units.
For any parabola \[{{y}^{2}}=4ax;\] the tangent of the parabola with slope ‘m’ is considered
as \[y=mx+\dfrac{a}{m}\].
Subsequently, the tangent to the parabola \[{{y}^{2}}=4\sqrt{5}x\] can be taken as:
\[y=mx+\dfrac{\sqrt{5}}{m};\]
Which can be rewritten as:
\[my={{m}^{2}}x+\sqrt{5}\];
As it was mentioned that the parabola and circle have a common tangent:
Then, the distance between \[\left( 0,0 \right)\] and \[my={{m}^{2}}x+\sqrt{5}\] is equal to
the radius of the circle.
Therefore, applying the distance formula,
\[\dfrac{\left| {{m}^{2}}\left( 0 \right)-m\left( 0 \right)+\sqrt{5} \right|}{\sqrt{{{\left(
{{m}^{2}} \right)}^{2}}+{{\left( -m \right)}^{2}}}}=\dfrac{\sqrt{5}}{2}\]
\[\dfrac{\sqrt{5}}{\sqrt{{{m}^{4}}+{{m}^{2}}}}=\dfrac{\sqrt{5}}{2}\]
Now, let us do squaring on both sides to simplify further;
\[2=\left( {{m}^{4}}+{{m}^{2}} \right)\]
\[\Rightarrow {{m}^{4}}+{{m}^{2}}+2=0\]
\[({{m}^{2}}+2)({{m}^{2}}-1)=0\]
\[\therefore {{m}^{2}}=1,{{m}^{2}}=-2\]
As \[{{m}^{2}}=-2\] is not valid, we shall consider \[m=\pm 1\].
So, the common tangents can be:
\[y=x+\sqrt{5}\], by substituting \[m=1\].
\[y=-x-\sqrt{5}\], by substituting \[m=-1\].
Now, for statement II:
On Solving;
\[\begin{align}
& {{m}^{4}}-3{{m}^{2}}+2=0 \\
& {{m}^{4}}-2{{m}^{2}}-{{m}^{2}}+2=0 \\
& \left( {{m}^{2}}-2 \right)\left( {{m}^{2}}-1 \right)=0 \\
\end{align}\]
We do have \[{{m}^{2}}=1\] from this expression, but it is not the same expression as
statement I.
So, both the statements are correct, but statement II is not the correct explanation of
statement I.
Hence, option b is the correct answer.
Note: You may also start the procedure by considering a common tangent expression with
respect to the given circle.
Also, as a square of a number can never be negative, we ignored \[{{m}^{2}}=-2\] as a
solution.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is the mechanism of halogenations of alkanes class 12 chemistry CBSE