What is the geometry of complexes having hybridization $ s{p^3} $ and $ ds{p^2} $ . Give an example of each.
Answer
279k+ views
Hint: Hybridization is the mixing of atomic orbitals with the same energy to form a new degenerate orbital. The orbital thus formed is called the hybrid orbital. Hybrid orbitals possess different geometry and energy than that of the individual atomic orbitals. $ sp\,,s{p^2}\,,s{p^3}\,,s{p^3}{d^2},{d^2}sp $ etc. are examples of few hybridised orbitals.
Complete answer:
Atomic orbitals of equal energy mix to form a hybrid orbital. Both half-filled and completely filled orbitals can take part in hybridisation. The number hybrid orbitals will be equal to the number of atomic orbitals that took part in mixing.
$ s{p^3} $ hybridization: It is formed by the mixing of one s orbital and three p orbitals of the same shell of an atom that are equal in energy. Mixing of these orbitals give $ 4 $ equivalent hybrid orbitals with $ s{p^3} $ hybridization. An $ s{p^3} $ hybridised orbital contains $ 25\% $ s character and $ 75\% $ p character. The geometry of complexes possessing $ s{p^3} $ hybridization will be tetrahedral. The four atoms bound to the central atom will be directed towards the four corners of the tetrahedron. The bond angle will be $ {109^ \circ }28' $ .
Example: $ {[Ni{(Cl)_4}]^{2 - }} $ .
$ ds{p^2} $ hybridization: Mixing of $ {d_{{x^2} - {y^2}}} $ orbital, one s orbital and two p orbitals of equivalent energies gives four equivalent $ ds{p^2} $ $ ( + 2) $ hybridised orbitals. An $ ds{p^2} $ hybridized orbital contains $ 25\% $ d character, $ 25\% $ s character and $ 50\% $ p character. The geometry of a $ ds{p^2} $ hybridised complex is square planar. The bond angle between the ligand-central atom-ligand will be $ {90^ \circ } $ .
Example : $ {[Ni{(CN)_4}]^{2 - }} $
Note:
Though the central atom and its oxidation state $ ( + 2) $ are the same in both the complexes, the difference in the geometry of the complex is due to the nature of ligands. Strong ligands will form $ ds{p^2} $ complexes, while weak ligands will form $ s{p^3} $ hybridised complexes.
It should be noted that molecular orbitals and hybrid orbitals are not the same. Molecular orbitals are formed by the interaction of different atomic orbitals while hybrid orbitals are formed by the mixing of atomic orbitals of the same atom.
Complete answer:
Atomic orbitals of equal energy mix to form a hybrid orbital. Both half-filled and completely filled orbitals can take part in hybridisation. The number hybrid orbitals will be equal to the number of atomic orbitals that took part in mixing.
$ s{p^3} $ hybridization: It is formed by the mixing of one s orbital and three p orbitals of the same shell of an atom that are equal in energy. Mixing of these orbitals give $ 4 $ equivalent hybrid orbitals with $ s{p^3} $ hybridization. An $ s{p^3} $ hybridised orbital contains $ 25\% $ s character and $ 75\% $ p character. The geometry of complexes possessing $ s{p^3} $ hybridization will be tetrahedral. The four atoms bound to the central atom will be directed towards the four corners of the tetrahedron. The bond angle will be $ {109^ \circ }28' $ .
Example: $ {[Ni{(Cl)_4}]^{2 - }} $ .

$ ds{p^2} $ hybridization: Mixing of $ {d_{{x^2} - {y^2}}} $ orbital, one s orbital and two p orbitals of equivalent energies gives four equivalent $ ds{p^2} $ $ ( + 2) $ hybridised orbitals. An $ ds{p^2} $ hybridized orbital contains $ 25\% $ d character, $ 25\% $ s character and $ 50\% $ p character. The geometry of a $ ds{p^2} $ hybridised complex is square planar. The bond angle between the ligand-central atom-ligand will be $ {90^ \circ } $ .
Example : $ {[Ni{(CN)_4}]^{2 - }} $

Note:
Though the central atom and its oxidation state $ ( + 2) $ are the same in both the complexes, the difference in the geometry of the complex is due to the nature of ligands. Strong ligands will form $ ds{p^2} $ complexes, while weak ligands will form $ s{p^3} $ hybridised complexes.
It should be noted that molecular orbitals and hybrid orbitals are not the same. Molecular orbitals are formed by the interaction of different atomic orbitals while hybrid orbitals are formed by the mixing of atomic orbitals of the same atom.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
