Answer

Verified

347.1k+ views

**Hint:**To solve this problem, we must first understand the Rydberg formula, its application, and the interpretation of each term specified in the formula. We'll also use Rydberg's equation to solve the problem.

**Complete step by step answer:**

The Rydberg formula is a mathematical formula that predicts the wavelength of light generated by an electron moving between atomic energy levels. The charge of an electron varies as it moves from one atomic orbital to another. A photon of light is produced when an electron moves from a high-energy orbital to a lower-energy orbital. When an electron passes from a low-energy to a higher-energy state, the atom absorbs a photon of light.

This formula was created by combining his findings with Bohr's atomic model:

\[1/\lambda {\text{ }} = {\text{ }}RZ{\;^2}\left( {1/n{\;_1}{\;^2}\; - {\text{ }}1/n{\;_2}{\;^2}} \right)\]

Where, \[\lambda \]= is the wavelength of the photon (wavenumber = 1/wavelength), \[R\] = Rydberg's constant, \[\;Z\] = atomic number of the atom and \[n{\;_1}\;\] and are integers where \[n{\;_2}\; > {\text{ }}n{\;_1}\].

So, for the given question,wavelength is represented by $\lambda $ and is given by following expression

$\dfrac{1}{\lambda } = R\left[ {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right] \\

\Rightarrow \dfrac{1}{\lambda } = \left( {1.097 \times {{10}^7}{m^{ - 1}}} \right)\left[ {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{3^2}}}} \right] \\

\Rightarrow \lambda = \,\dfrac{9}{{8 \times 1.097 \times {{10}^7}}} \\

\Rightarrow \lambda= \dfrac{9}{{8.776 \times {{10}^7}}} = 1.025 \times {10^{ - 7}} \\

\Rightarrow \text{frequency is given by (v)} = \dfrac{c}{\lambda } \\

\Rightarrow \text{frequency is given by (v)}= \dfrac{{3 \times {{10}^8}}}{{1.025 \times {{10}^{ - 7}}}} \\

\therefore \text{frequency is given by (v)}= 2.926 \times {10^{15}}\,Hz$

**Hence,the frequency of the emitted radiation is $2.926 \times {10^{15}}\,Hz$.**

**Note:**The question now is, why can't the Rydberg equation be applied to all atoms?Since the Bohr model of the atom breaks down when there are more than two electrons, the Rydberg equation only works for Hydrogen and Hydrogen-like (species with only one electron). As a result, the Schrodinger equation yields the following mathematical model of the atom: $\,H{\text{ }} = {\text{ }}E$.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE