
For the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$,verify that
(i) $\left( {A + A'} \right)$is a symmetric matrix.
(ii) $\left( {A - A'} \right)$is a skew symmetric matrix.
Answer
624.9k+ views
Hint: Use the property of symmetric and skew symmetric matrices directly on the given matrix expression.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

