
For the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$,verify that
(i) $\left( {A + A'} \right)$is a symmetric matrix.
(ii) $\left( {A - A'} \right)$is a skew symmetric matrix.
Answer
540.3k+ views
Hint: Use the property of symmetric and skew symmetric matrices directly on the given matrix expression.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
