For the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$,verify that
(i) $\left( {A + A'} \right)$is a symmetric matrix.
(ii) $\left( {A - A'} \right)$is a skew symmetric matrix.
Last updated date: 26th Mar 2023
•
Total views: 311.4k
•
Views today: 4.92k
Answer
311.4k+ views
Hint: Use the property of symmetric and skew symmetric matrices directly on the given matrix expression.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Given the matrix $A = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right)$
We know that the transpose of a matrix is obtained by switching the rows with its columns
$ \Rightarrow A' = \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right)$
A Symmetric matrix is the one in which the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }}A = A'\]
We need to prove $\left( {A + A'} \right)$is a symmetric matrix.
$A + A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (1)}}$
Also,${\left( {A + A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
2&{11} \\
{11}&{14}
\end{array}} \right){\text{ (2)}}$
From equations $(1)$and$(2)$ , we get ${\left( {A + A'} \right)^\prime } = \left( {A + A'} \right)$, which satisfies the above-mentioned condition of symmetric matrices.
Hence $\left( {A + A'} \right)$is a symmetric matrix.
A Skew symmetric matrix is the one in which the negative of the matrix is equal to the transpose of itself.
\[ \Rightarrow if{\text{ }}A = {\left[ {{a_{ij}}} \right]_{n \times m}}{\text{ }}and{\text{ }}A' = {\left[ {{a_{ij}}} \right]_{m \times n}}{\text{ ,}}then{\text{ }} - A = A'\]
We need to prove $\left( {A - A'} \right)$is a skew symmetric matrix.
$A - A' = \left( {\begin{array}{*{20}{c}}
1&5 \\
6&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1&6 \\
5&7
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right){\text{ (3)}}$
Also,${\left( {A - A'} \right)^\prime } = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right){\text{ (4)}}$
From equations $(3)$and$(4)$ , we get ${\left( {A - A'} \right)^\prime } = - \left( {A - A'} \right)$, which satisfies the above-mentioned condition of skew symmetric matrices.
Hence $\left( {A - A'} \right)$is a skew symmetric matrix verified.
Note: The above-mentioned results are true for all square matrices. Similarly using above results, it can be proved that a square matrix can be expressed as the sum of a symmetric and skew symmetric matrix.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
