
For the curve \[y = 3\sin \theta \cos \theta , x = {e^\theta }\sin \theta \], \[0 \leqslant \theta \leqslant \pi \], the tangent is parallel to x-axis when \[\theta \] is
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{4}\]
D. \[\dfrac{\pi }{6}\]
Answer
521.7k+ views
Hint: We differentiate both y and x with respect to \[\theta \] and write the value of \[\dfrac{{dy}}{{d\theta }}\] and \[\dfrac{{dx}}{{d\theta }}\]. Then divide the differentiation of y by differentiation of x to get the value of \[\dfrac{{dy}}{{dx}}\] which gives us the tangent. Then we equate the value to zero as the tangent is parallel to x-axis and a line parallel to x has y coordinate as constant so the differentiation of the line parallel to x-axis is equal to zero.
Complete step-by-step answer:
We have curves \[y = 3\sin \theta \cos \theta \] and \[x = {e^\theta }\sin \theta \].
First we will differentiate y with respect to \[\theta \].
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(3\sin \theta \cos \theta )\]
Taking out the constant term we get
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3 \times \dfrac{d}{{d\theta }}(\sin \theta \cos \theta )\]
Now using product rule of differentiation i.e. \[\dfrac{d}{{dx}}(m \times n) = m \times \dfrac{{dn}}{{dx}} + n \times \dfrac{{dm}}{{dx}}\]. Substitute the values of \[m = \sin \theta ,n = \cos \theta \].
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {\sin \theta \times \dfrac{d}{{d\theta }}(\cos \theta ) + \cos \theta \times \dfrac{d}{{d\theta }}(\sin \theta )} \right]\]
Substituting the values of \[\dfrac{d}{{d\theta }}\sin \theta = \cos \theta ,\dfrac{d}{{d\theta }}\cos \theta = - \sin \theta \] we get
\[
\Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {\sin \theta \times ( - \sin \theta ) + \cos \theta \times (\cos \theta )} \right] \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {{{\cos }^2}\theta - {{\sin }^2}\theta } \right] \\
\]
Using the formula \[{a^2} - {b^2} = (a - b)(a + b)\]where \[a = \cos \theta ,b = \sin \theta \], we can write
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {(\cos \theta - \sin \theta )(\cos \theta + \sin \theta )} \right]\] … (1)
Now we will differentiate x with respect to \[\theta \].
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}({e^\theta }\sin \theta )\]
Now using product rule of differentiation i.e. \[\dfrac{d}{{dx}}(m \times n) = m \times \dfrac{{dn}}{{dx}} + n \times \dfrac{{dm}}{{dx}}\]. Substitute the values of \[m = {e^\theta },n = \sin \theta \].
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta } \times \dfrac{d}{{d\theta }}(\sin \theta ) + \sin \theta \times \dfrac{d}{{d\theta }}({e^\theta })} \right]\]
Substituting the values of \[\dfrac{d}{{d\theta }}\sin \theta = \cos \theta ,\dfrac{d}{{d\theta }}{e^\theta } = {e^\theta }\] we get
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta }(\cos \theta ) + \sin \theta \times ({e^\theta })} \right]\]
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta }(\cos \theta + \sin \theta )} \right]\] … (2)
Now we know that \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\]. Substituting the values from (1) and (2) .
\[\dfrac{{dy}}{{dx}} = 3\left[ {(\cos \theta - \sin \theta )(\cos \theta + \sin \theta )} \right] \times \dfrac{1}{{[{e^\theta }(\cos \theta + \sin \theta )]}}\]
Cancel out same terms from numerator and denominator we get
\[
\dfrac{{dy}}{{dx}} = 3\left[ {(\cos \theta - \sin \theta )} \right] \times \dfrac{1}{{[{e^\theta }]}} \\
\dfrac{{dy}}{{dx}} = \dfrac{{3(\cos \theta - \sin \theta )}}{{{e^\theta }}} \\
\]
Now we equate the slope of the tangent to zero.
\[ \Rightarrow \dfrac{{3(\cos \theta - \sin \theta )}}{{{e^\theta }}} = 0\]
Cross multiplying the denominator of LHs to numerator of RHS we get
\[
\Rightarrow 3(\cos \theta - \sin \theta ) = 0 \\
\Rightarrow \cos \theta - \sin \theta = 0 \\
\]
Shifting the value of sin to opposite side of the equation we get
\[ \Rightarrow \cos \theta = \sin \theta \]
Dividing both sides by \[\cos \theta \] we get
\[
\Rightarrow \dfrac{{\cos \theta }}{{\cos \theta }} = \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow 1 = \tan \theta \\
\]
Since, we know the value of \[\tan \theta = 1\] when \[\theta = \dfrac{\pi }{4}\].
So, the correct answer is “Option A”.
Note: Students mostly make mistake of writing the fraction as \[\dfrac{y}{x}\] and then try to differentiate which is wrong because both x and y are in terms of \[\theta \] so we differentiate them with respect to \[\theta \].
Complete step-by-step answer:
We have curves \[y = 3\sin \theta \cos \theta \] and \[x = {e^\theta }\sin \theta \].
First we will differentiate y with respect to \[\theta \].
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(3\sin \theta \cos \theta )\]
Taking out the constant term we get
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3 \times \dfrac{d}{{d\theta }}(\sin \theta \cos \theta )\]
Now using product rule of differentiation i.e. \[\dfrac{d}{{dx}}(m \times n) = m \times \dfrac{{dn}}{{dx}} + n \times \dfrac{{dm}}{{dx}}\]. Substitute the values of \[m = \sin \theta ,n = \cos \theta \].
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {\sin \theta \times \dfrac{d}{{d\theta }}(\cos \theta ) + \cos \theta \times \dfrac{d}{{d\theta }}(\sin \theta )} \right]\]
Substituting the values of \[\dfrac{d}{{d\theta }}\sin \theta = \cos \theta ,\dfrac{d}{{d\theta }}\cos \theta = - \sin \theta \] we get
\[
\Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {\sin \theta \times ( - \sin \theta ) + \cos \theta \times (\cos \theta )} \right] \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {{{\cos }^2}\theta - {{\sin }^2}\theta } \right] \\
\]
Using the formula \[{a^2} - {b^2} = (a - b)(a + b)\]where \[a = \cos \theta ,b = \sin \theta \], we can write
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = 3\left[ {(\cos \theta - \sin \theta )(\cos \theta + \sin \theta )} \right]\] … (1)
Now we will differentiate x with respect to \[\theta \].
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}({e^\theta }\sin \theta )\]
Now using product rule of differentiation i.e. \[\dfrac{d}{{dx}}(m \times n) = m \times \dfrac{{dn}}{{dx}} + n \times \dfrac{{dm}}{{dx}}\]. Substitute the values of \[m = {e^\theta },n = \sin \theta \].
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta } \times \dfrac{d}{{d\theta }}(\sin \theta ) + \sin \theta \times \dfrac{d}{{d\theta }}({e^\theta })} \right]\]
Substituting the values of \[\dfrac{d}{{d\theta }}\sin \theta = \cos \theta ,\dfrac{d}{{d\theta }}{e^\theta } = {e^\theta }\] we get
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta }(\cos \theta ) + \sin \theta \times ({e^\theta })} \right]\]
\[ \Rightarrow \dfrac{{dx}}{{d\theta }} = \left[ {{e^\theta }(\cos \theta + \sin \theta )} \right]\] … (2)
Now we know that \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\]. Substituting the values from (1) and (2) .
\[\dfrac{{dy}}{{dx}} = 3\left[ {(\cos \theta - \sin \theta )(\cos \theta + \sin \theta )} \right] \times \dfrac{1}{{[{e^\theta }(\cos \theta + \sin \theta )]}}\]
Cancel out same terms from numerator and denominator we get
\[
\dfrac{{dy}}{{dx}} = 3\left[ {(\cos \theta - \sin \theta )} \right] \times \dfrac{1}{{[{e^\theta }]}} \\
\dfrac{{dy}}{{dx}} = \dfrac{{3(\cos \theta - \sin \theta )}}{{{e^\theta }}} \\
\]
Now we equate the slope of the tangent to zero.
\[ \Rightarrow \dfrac{{3(\cos \theta - \sin \theta )}}{{{e^\theta }}} = 0\]
Cross multiplying the denominator of LHs to numerator of RHS we get
\[
\Rightarrow 3(\cos \theta - \sin \theta ) = 0 \\
\Rightarrow \cos \theta - \sin \theta = 0 \\
\]
Shifting the value of sin to opposite side of the equation we get
\[ \Rightarrow \cos \theta = \sin \theta \]
Dividing both sides by \[\cos \theta \] we get
\[
\Rightarrow \dfrac{{\cos \theta }}{{\cos \theta }} = \dfrac{{\sin \theta }}{{\cos \theta }} \\
\Rightarrow 1 = \tan \theta \\
\]
Since, we know the value of \[\tan \theta = 1\] when \[\theta = \dfrac{\pi }{4}\].
So, the correct answer is “Option A”.
Note: Students mostly make mistake of writing the fraction as \[\dfrac{y}{x}\] and then try to differentiate which is wrong because both x and y are in terms of \[\theta \] so we differentiate them with respect to \[\theta \].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
