
For any vector \[\overrightarrow r \], prove that \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \].
Answer
611.4k+ views
Hint: To prove the given problem we have to take the standard equation of vector \[\overrightarrow r \]i.e., \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge \]. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Complete step-by-step answer:
Given \[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge ..................................................\left( 1 \right)\]
Let \[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ............................................................\left( 2 \right)\]
From equation (1) and (2) we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Now first consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop i\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop i\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 1 \right) + y\left( 0 \right) + z\left( 0 \right)} \right)\mathop i\limits^ \wedge = x\mathop i\limits^ \wedge \]
Then consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop j\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop j\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop k\limits^ \wedge .\mathop j\limits^ \wedge = 0\] we have
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 0 \right)} \right)\mathop j\limits^ \wedge = y\mathop j\limits^ \wedge \]
Next consider \[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
\[\overrightarrow r = \left( {x\mathop i\limits^ \wedge .\mathop k\limits^ \wedge + y\mathop j\limits^ \wedge .\mathop k\limits^ \wedge + z\mathop k\limits^ \wedge .\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
By using the formulae \[\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1\]
\[\overrightarrow r = \left( {x\left( 0 \right) + y\left( 1 \right) + z\left( 1 \right)} \right)\mathop k\limits^ \wedge = z\mathop k\limits^ \wedge \]
Using the above information, we have
\[\overrightarrow r = \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\left( {x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge } \right).\mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \] equals to
\[\overrightarrow r = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge ...........................................\left( 3 \right)\]
From equations (2) and (3) we can conclude that
\[\overrightarrow r = \left( {\overrightarrow r .\mathop i\limits^ \wedge } \right)\mathop i\limits^ \wedge + \left( {\overrightarrow r .\mathop j\limits^ \wedge } \right)\mathop j\limits^ \wedge + \left( {\overrightarrow {r.} \mathop k\limits^ \wedge } \right)\mathop k\limits^ \wedge \]
Hence proved.
Note: Here we have used dot products of vectors. The formulae which are used in the solution are
\[\mathop i\limits^ \wedge .\mathop i\limits^ \wedge = 1{\text{ , }}\mathop i\limits^ \wedge . \mathop j\limits^ \wedge = 0{\text{ and }}\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop j\limits^ \wedge .\mathop i\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop j\limits^ \wedge = 1{\text{ and }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0 \\
\mathop i\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ , }}\mathop j\limits^ \wedge .\mathop k\limits^ \wedge = 0{\text{ and }}\mathop k\limits^ \wedge .\mathop k\limits^ \wedge = 1 \\
\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

