Answer
Verified
469.5k+ views
Hint: Use commutative and associative property for the given operation.
We have been given the operator \[ * \] such that:
\[{\text{ }}a * b = 1 + ab{\text{ (1) ; }}a,b{\text{ }} \in {\text{R}}\]
Since \[(1 + ab){\text{ }}\]also belongs to \[R{\text{ }}\](Real Numbers Set),
Operator \[ * \] satisfies closure property
\[a * b\] is a binary operation.
For binary operation to be commutative, we would have the following condition:
\[a * b = b * a {\text{(2)}}\]
We need to check condition (2) for operation (1)
\[
a * b = 1 + ab \\
b * a = 1 + ba \\
\]
Since multiplication operator is commutative, we have
\[
ab = ba \\
\Rightarrow a * b = 1 + ab = 1 + ba = b * a \\
\]
Hence condition (2) is satisfied.
Therefore, operation (1) is commutative.
For binary operation to be associative, we would have the following condition:
\[a * \left( {b * c} \right) = \left( {a * b} \right) * c{\text{ (3)}}\]
We need to check for condition (3) for operator (1)
\[
a * \left( {b * c} \right) = a * \left( {1 + bc} \right) = 1 + a(1 + bc) = 1 + a + abc \\
\left( {a * b} \right) * c = \left( {1 + ab} \right) * c = 1 + \left( {1 + ab} \right)c = 1 + c + abc \\
\]
Since \[1 + a + abc \ne 1 + c + abc\], condition (3) is not satisfied.
Therefore, operation (1) is not associative.
Hence the correct option is $\left( A \right)$. Commutative but not associative.
Note: Always try to remember the basic conditions for associativity and commutativity. Commutativity does not imply associativity.
We have been given the operator \[ * \] such that:
\[{\text{ }}a * b = 1 + ab{\text{ (1) ; }}a,b{\text{ }} \in {\text{R}}\]
Since \[(1 + ab){\text{ }}\]also belongs to \[R{\text{ }}\](Real Numbers Set),
Operator \[ * \] satisfies closure property
\[a * b\] is a binary operation.
For binary operation to be commutative, we would have the following condition:
\[a * b = b * a {\text{(2)}}\]
We need to check condition (2) for operation (1)
\[
a * b = 1 + ab \\
b * a = 1 + ba \\
\]
Since multiplication operator is commutative, we have
\[
ab = ba \\
\Rightarrow a * b = 1 + ab = 1 + ba = b * a \\
\]
Hence condition (2) is satisfied.
Therefore, operation (1) is commutative.
For binary operation to be associative, we would have the following condition:
\[a * \left( {b * c} \right) = \left( {a * b} \right) * c{\text{ (3)}}\]
We need to check for condition (3) for operator (1)
\[
a * \left( {b * c} \right) = a * \left( {1 + bc} \right) = 1 + a(1 + bc) = 1 + a + abc \\
\left( {a * b} \right) * c = \left( {1 + ab} \right) * c = 1 + \left( {1 + ab} \right)c = 1 + c + abc \\
\]
Since \[1 + a + abc \ne 1 + c + abc\], condition (3) is not satisfied.
Therefore, operation (1) is not associative.
Hence the correct option is $\left( A \right)$. Commutative but not associative.
Note: Always try to remember the basic conditions for associativity and commutativity. Commutativity does not imply associativity.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE