Answer
Verified
439.2k+ views
Hint:
We can use the relationship between the molality of the solution and elevation of boiling point along with that of amount and molar mass.
Complete step by step solution
Among other colligative properties, we have elevation of boiling point of a solvent that also results from the lowering in vapor pressure of the solvent upon addition of a non-volatile solute.
The elevation of boiling point can be related to the molality of the solution by the following expression:
$\Delta {T_b} = {K_b}m$
Here, $\Delta {T_b}$ is the elevation of boiling point of the solvent, ${K_b}$ is the molal
elevation constant for the given solvent and is the molality of the solution.
We can also write the molality of a solution by using number of moles of solute $\left( {{n_{solute}}} \right)$ present in the given mass of solvent $\left( {{m_{solvent}}} \right)$ as follows:
$m = \dfrac{{{n_{solute}}}}{{{m_{solvent}}\;in\;kg}}$
We know that the mass of $1$ mole of a substance is its molar mass $M$ . So we can write:
\[\dfrac{{1\;{\rm{mol}}}}{M}\]
We can use this conversion factor to calculate the amount of solute in given mass \[\left( {{m_{solute}}} \right)\] by using its molar mass \[\left( {{M_{solute}}} \right)\]as follows:
\[
{n_{solute}} = {m_{solute}} \times \left( {\dfrac{{1\;{\rm{mol}}}}{{{M_{solute}}\;g}}} \right)\\
= \dfrac{{{m_{solute}}}}{{{M_{solute}}}}
\]
Let’s rewrite the previously written expression of molality by using the above expression for amount of solute as follows:
\[m = \dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}}\]
We can use this equation to rewrite the expression for elevation of boiling point as follows:
$\Delta {T_b} = {K_b}\left\{ {\dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}}} \right\}$
Let’s rearrange this equation for molar mass of solute:
$
{K_b}\left\{ {\dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}}} \right\} = \Delta {T_b}\\
\dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}} = \dfrac{{\Delta {T_b}}}{{{K_b}}}\\
{M_{solute}} = \dfrac{{{K_b}}}{{\Delta {T_b}}}\dfrac{{{m_{solute}}}}{{{m_{solvent}}\;in\;kg}}
$
Here, we have used subscript $1$ for solvent and \[2\] for solute. So, let’s incorporate these in our derived equation as follows:
${M_2} = \dfrac{{{K_b}}}{{\Delta {T_b}}}\dfrac{{{m_2}}}{{{m_1}}}$
Hence, the correct option is C.
Note:
We have to use the subscripts carefully for solute and solvent in the expressions.
We also have to take care of the units as well.
We can use the relationship between the molality of the solution and elevation of boiling point along with that of amount and molar mass.
Complete step by step solution
Among other colligative properties, we have elevation of boiling point of a solvent that also results from the lowering in vapor pressure of the solvent upon addition of a non-volatile solute.
The elevation of boiling point can be related to the molality of the solution by the following expression:
$\Delta {T_b} = {K_b}m$
Here, $\Delta {T_b}$ is the elevation of boiling point of the solvent, ${K_b}$ is the molal
elevation constant for the given solvent and is the molality of the solution.
We can also write the molality of a solution by using number of moles of solute $\left( {{n_{solute}}} \right)$ present in the given mass of solvent $\left( {{m_{solvent}}} \right)$ as follows:
$m = \dfrac{{{n_{solute}}}}{{{m_{solvent}}\;in\;kg}}$
We know that the mass of $1$ mole of a substance is its molar mass $M$ . So we can write:
\[\dfrac{{1\;{\rm{mol}}}}{M}\]
We can use this conversion factor to calculate the amount of solute in given mass \[\left( {{m_{solute}}} \right)\] by using its molar mass \[\left( {{M_{solute}}} \right)\]as follows:
\[
{n_{solute}} = {m_{solute}} \times \left( {\dfrac{{1\;{\rm{mol}}}}{{{M_{solute}}\;g}}} \right)\\
= \dfrac{{{m_{solute}}}}{{{M_{solute}}}}
\]
Let’s rewrite the previously written expression of molality by using the above expression for amount of solute as follows:
\[m = \dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}}\]
We can use this equation to rewrite the expression for elevation of boiling point as follows:
$\Delta {T_b} = {K_b}\left\{ {\dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}}} \right\}$
Let’s rearrange this equation for molar mass of solute:
$
{K_b}\left\{ {\dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}}} \right\} = \Delta {T_b}\\
\dfrac{{{m_{solute}}}}{{\left( {{M_{solute}}} \right)\left( {{m_{solvent}}\;in\;kg} \right)}} = \dfrac{{\Delta {T_b}}}{{{K_b}}}\\
{M_{solute}} = \dfrac{{{K_b}}}{{\Delta {T_b}}}\dfrac{{{m_{solute}}}}{{{m_{solvent}}\;in\;kg}}
$
Here, we have used subscript $1$ for solvent and \[2\] for solute. So, let’s incorporate these in our derived equation as follows:
${M_2} = \dfrac{{{K_b}}}{{\Delta {T_b}}}\dfrac{{{m_2}}}{{{m_1}}}$
Hence, the correct option is C.
Note:
We have to use the subscripts carefully for solute and solvent in the expressions.
We also have to take care of the units as well.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE