
For $4{d^3}5{s^2}$ configuration belongs to which group?
A. IIA
B. IIB
C. VB
D. IIIB
Answer
466.2k+ views
Hint: The configuration $4{d^3}5{s^2}$is the outer electronic configuration of element Niobium which is represented by Nb. Its atomic number is 41. n is the number of electrons present in s orbital.
Complete answer:
The electronic configuration of the element niobium (Nb) is $[Kr]4{d^3}5{s^2}$.
The symbol [Kr] is the condensed electron configuration of the element krypton present in the ground state. It represents all the electrons present in this element. The ground state atom of this element will contain the electronic configuration $4{d^3}5{s^2}$. This element will be present just beneath the period in which krypton is present. Krypton is the last element of the fourth period. Therefore, the element is present in the fifth period of the periodic table. The value of n is 5.
The block of the element present in the periodic table is determined by the type of the occupied electron orbital with highest potential energy. The electron with the highest potential energy in the ground state atom of the element is present is 4d orbital. Therefore, the element is present in the d-block of the periodic table.
The group of the element is calculated by the formula as shown below.
$Group = ns + (n - 1)d{e^ - }$
$\Rightarrow Group = 2 + 3$
$\Rightarrow Group = 5$
Therefore, the group in which $4{d^3}5{s^2}$ configuration belongs is VB.
Therefore, the correct option is C.
Note:
The electron consisting of the highest potential energy in the ground state atom of the element is obtained using the Aufbau diagram. The actual electronic configuration of niobium is $[Kr]4{d^4}5{s^1}$ but the new electronic configuration is $[Kr]4{d^3}5{s^2}$which is stabilized with the Aufbau principle.
Complete answer:
The electronic configuration of the element niobium (Nb) is $[Kr]4{d^3}5{s^2}$.
The symbol [Kr] is the condensed electron configuration of the element krypton present in the ground state. It represents all the electrons present in this element. The ground state atom of this element will contain the electronic configuration $4{d^3}5{s^2}$. This element will be present just beneath the period in which krypton is present. Krypton is the last element of the fourth period. Therefore, the element is present in the fifth period of the periodic table. The value of n is 5.
The block of the element present in the periodic table is determined by the type of the occupied electron orbital with highest potential energy. The electron with the highest potential energy in the ground state atom of the element is present is 4d orbital. Therefore, the element is present in the d-block of the periodic table.
The group of the element is calculated by the formula as shown below.
$Group = ns + (n - 1)d{e^ - }$
$\Rightarrow Group = 2 + 3$
$\Rightarrow Group = 5$
Therefore, the group in which $4{d^3}5{s^2}$ configuration belongs is VB.
Therefore, the correct option is C.
Note:
The electron consisting of the highest potential energy in the ground state atom of the element is obtained using the Aufbau diagram. The actual electronic configuration of niobium is $[Kr]4{d^4}5{s^1}$ but the new electronic configuration is $[Kr]4{d^3}5{s^2}$which is stabilized with the Aufbau principle.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

How much time does it take to bleed after eating p class 12 biology CBSE
