
How do you find two unit vectors that are orthogonal to $\left( -3,4 \right)$?
Answer
553.2k+ views
Hint: We first form the vector with the given coordinate point of $\left( -3,4 \right)$. We find the orthogonal or perpendicular vectors to $\left( -3,4 \right)$ in that same plane. We also know that any vector perpendicular to the X-Y plane is orthogonal to $-3\widehat{i}+4\widehat{j}$. We take all the unit vectors along those orthogonal vectors.
Complete step by step answer:
We need to find two unit vectors that are orthogonal to $\left( -3,4 \right)$.
First, we try to form the vector with the given coordinate point of $\left( -3,4 \right)$.
The vector is indicated by $-3\widehat{i}+4\widehat{j}$. This vector lies on the X-Y plane.
Any arbitrary vector on the X-Y plane will be defined as $a\widehat{i}+b\widehat{j}$.
Let’s assume the vector $a\widehat{i}+b\widehat{j}$ is orthogonal to the vector $-3\widehat{i}+4\widehat{j}$.
The dot product between any two orthogonal vectors will always give the zero value.
So, $\left( -3\widehat{i}+4\widehat{j} \right)\left( a\widehat{i}+b\widehat{j} \right)=0$. In dot product the same axes multiplication gives 1 and different axes multiplication gives 0.
Therefore, $-3a+4b=0$ which on simplification gives $b=\dfrac{3a}{4}$.
We replace the value and get that the vector $a\widehat{i}+\dfrac{3a}{4}\widehat{j}$ is orthogonal to the given vector.
Now we find the magnitude which is $\sqrt{{{a}^{2}}+{{\left( \dfrac{3a}{4} \right)}^{2}}}=\dfrac{5a}{4}$.
The unit vector orthogonal to the given vector $-3\widehat{i}+4\widehat{j}$ is $\dfrac{a\widehat{i}+\dfrac{3a}{4}\widehat{j}}{\pm \dfrac{5a}{4}}=\pm \dfrac{4}{5a}\left( a\widehat{i}+\dfrac{3a}{4}\widehat{j} \right)=\pm \left( \dfrac{4}{5}\widehat{i}+\dfrac{3}{5}\widehat{j} \right)$.
These vectors are on the X-Y plane.
As the given vector is on the X-Y plane, any vector perpendicular to the X-Y plane is orthogonal to $-3\widehat{i}+4\widehat{j}$.
Those unit vectors are $\pm \widehat{k}$.
The vectors which are orthogonal to $\left( -3,4 \right)$ are $\pm \left( \dfrac{4}{5}\widehat{i}+\dfrac{3}{5}\widehat{j} \right),\pm \widehat{k}$.
Note: The other planes are automatically perpendicular to the X-Y plane. That’s why we broke the orthogonal vectors into two parts. The unit vectors are also perpendicular to $\left( -3,4 \right)$.
Complete step by step answer:
We need to find two unit vectors that are orthogonal to $\left( -3,4 \right)$.
First, we try to form the vector with the given coordinate point of $\left( -3,4 \right)$.
The vector is indicated by $-3\widehat{i}+4\widehat{j}$. This vector lies on the X-Y plane.
Any arbitrary vector on the X-Y plane will be defined as $a\widehat{i}+b\widehat{j}$.
Let’s assume the vector $a\widehat{i}+b\widehat{j}$ is orthogonal to the vector $-3\widehat{i}+4\widehat{j}$.
The dot product between any two orthogonal vectors will always give the zero value.
So, $\left( -3\widehat{i}+4\widehat{j} \right)\left( a\widehat{i}+b\widehat{j} \right)=0$. In dot product the same axes multiplication gives 1 and different axes multiplication gives 0.
Therefore, $-3a+4b=0$ which on simplification gives $b=\dfrac{3a}{4}$.
We replace the value and get that the vector $a\widehat{i}+\dfrac{3a}{4}\widehat{j}$ is orthogonal to the given vector.
Now we find the magnitude which is $\sqrt{{{a}^{2}}+{{\left( \dfrac{3a}{4} \right)}^{2}}}=\dfrac{5a}{4}$.
The unit vector orthogonal to the given vector $-3\widehat{i}+4\widehat{j}$ is $\dfrac{a\widehat{i}+\dfrac{3a}{4}\widehat{j}}{\pm \dfrac{5a}{4}}=\pm \dfrac{4}{5a}\left( a\widehat{i}+\dfrac{3a}{4}\widehat{j} \right)=\pm \left( \dfrac{4}{5}\widehat{i}+\dfrac{3}{5}\widehat{j} \right)$.
These vectors are on the X-Y plane.
As the given vector is on the X-Y plane, any vector perpendicular to the X-Y plane is orthogonal to $-3\widehat{i}+4\widehat{j}$.
Those unit vectors are $\pm \widehat{k}$.
The vectors which are orthogonal to $\left( -3,4 \right)$ are $\pm \left( \dfrac{4}{5}\widehat{i}+\dfrac{3}{5}\widehat{j} \right),\pm \widehat{k}$.
Note: The other planes are automatically perpendicular to the X-Y plane. That’s why we broke the orthogonal vectors into two parts. The unit vectors are also perpendicular to $\left( -3,4 \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

