
Find the values of $x$ for which the given matrix \[\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right]\] will be non-singular.
A). \[ - 2 \leqslant x \leqslant 2\]
B). For all$x$other than $2$and $ - 2$
C). \[x \geqslant 2\]
D). $x \leqslant - 2$
Answer
519.9k+ views
Hint: We need to find that for which values of $x$ the given matrix \[\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right]\] will be non-singular. Non-singular matrix is a matrix whose determinant is non-zero. So we need to find the values of $x$ for which determinant of the above matrix will be a non-zero value.
Complete step-by-step solution:
We have to check that for which values of $x$ the given matrix \[\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right]\] will be non-singular. Non-singular matrix is a matrix whose determinant is non-zero. So we need to check the values of $x$ for which determinant of the above matrix will be a non-zero value.
Let us calculate the determinant of the above matrix,
\[\left| {\begin{array}{*{20}{c}}
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right|\]
On applying the formula for the determinant we get,
$ = - x( - {x^2} - 2x) - x( - 2x + {x^2}) + 2( - 4 - {x^2})$
On performing the multiplication of all the terms in the equation we get,
\[ = {x^3} + 2{x^2} - {x^3} + 2{x^2} - 8 - 2{x^2}\]
On performing all the operations in the above equation we get,
\[ = 2{x^2} - 8\]
Now, we need to find the condition that the matrix will be non-singular.
The condition for the matrix to be non-singular is, the determinant of the matrix should have non-zero value.
Thus,
\[2{x^2} - 8 \ne 0\]
Therefore,
\[x \ne 2{\text{ and }}x \ne - 2\]
This is a required condition for which the matrix will be non-singular.
Hence option B) For all $x$ other than $2$ and $ - 2$ is correct.
As from the calculations, required condition for which matrix will be non-singular is \[x \ne 2{\text{ and }}x \ne - 2\], hence option A) \[ - 2 \leqslant x \leqslant 2\] is incorrect.
As from the calculations, the required condition for which matrix will be non-singular is \[x \ne 2{\text{ and }}x \ne - 2\], hence option C) \[x \geqslant 2\] is incorrect.
As from the calculations, the required condition for which the matrix will be non-singular is \[x \ne 2{\text{ and }}x \ne - 2\], hence option D) $x \leqslant - 2$ is incorrect.
Note: Singular matrix is a matrix whose determinant is zero and non-singular matrix is a matrix whose determinant is non-zero. If the condition is in the square form then we need to consider both positive and negative square root values of the solution.
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right]\] will be non-singular. Non-singular matrix is a matrix whose determinant is non-zero. So we need to find the values of $x$ for which determinant of the above matrix will be a non-zero value.
Complete step-by-step solution:
We have to check that for which values of $x$ the given matrix \[\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right]\] will be non-singular. Non-singular matrix is a matrix whose determinant is non-zero. So we need to check the values of $x$ for which determinant of the above matrix will be a non-zero value.
Let us calculate the determinant of the above matrix,
\[\left| {\begin{array}{*{20}{c}}
{ - x}&x&2 \\
2&x&{ - x} \\
x&{ - 2}&{ - x}
\end{array}} \right|\]
On applying the formula for the determinant we get,
$ = - x( - {x^2} - 2x) - x( - 2x + {x^2}) + 2( - 4 - {x^2})$
On performing the multiplication of all the terms in the equation we get,
\[ = {x^3} + 2{x^2} - {x^3} + 2{x^2} - 8 - 2{x^2}\]
On performing all the operations in the above equation we get,
\[ = 2{x^2} - 8\]
Now, we need to find the condition that the matrix will be non-singular.
The condition for the matrix to be non-singular is, the determinant of the matrix should have non-zero value.
Thus,
\[2{x^2} - 8 \ne 0\]
Therefore,
\[x \ne 2{\text{ and }}x \ne - 2\]
This is a required condition for which the matrix will be non-singular.
Hence option B) For all $x$ other than $2$ and $ - 2$ is correct.
As from the calculations, required condition for which matrix will be non-singular is \[x \ne 2{\text{ and }}x \ne - 2\], hence option A) \[ - 2 \leqslant x \leqslant 2\] is incorrect.
As from the calculations, the required condition for which matrix will be non-singular is \[x \ne 2{\text{ and }}x \ne - 2\], hence option C) \[x \geqslant 2\] is incorrect.
As from the calculations, the required condition for which the matrix will be non-singular is \[x \ne 2{\text{ and }}x \ne - 2\], hence option D) $x \leqslant - 2$ is incorrect.
Note: Singular matrix is a matrix whose determinant is zero and non-singular matrix is a matrix whose determinant is non-zero. If the condition is in the square form then we need to consider both positive and negative square root values of the solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

