Answer
Verified
391.2k+ views
Hint: Type of question is based on the matrix. For solving the type of questions we should know the properties based on how to solve these matrix problems. so by using the matrix identity, we will simplify the LHS and RHS side and find out the $x,y,z$.
Complete step-by-step solution:
So moving ahead with question which we have i.e. \[\left\{ 3\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
2 & 2 \\
\end{matrix} \right]-4\left[ \begin{matrix}
1 & 1 \\
-1 & 2 \\
3 & 1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]\]
On solving the LHS side matrix, by using the identity$x\left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]=\left[ \begin{matrix}
xa & bx \\
cx & dx \\
ex & fx \\
\end{matrix} \right]$.
we will have;
$\left\{ \left[ \begin{matrix}
6 & 0 \\
0 & 6 \\
6 & 6 \\
\end{matrix} \right]-\left[ \begin{matrix}
4 & 4 \\
-4 & 8 \\
12 & 4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]$
Now again using the identity of subtraction and addition of matrices in the LHS side i.e. \[\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]-\left[ \begin{matrix}
g & h \\
i & j \\
k & l \\
\end{matrix} \right] \right\}=\left[ \begin{matrix}
a-g & b-h \\
c-i & d-j \\
e-k & f-l \\
\end{matrix} \right]\] , we will have;
$\begin{align}
& \left\{ \left[ \begin{matrix}
6-4 & 0-4 \\
0-(-4) & 6-8 \\
6-12 & 6-4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left\{ \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}$
As still there are two matrices in the LHS side, so reduce them to a single matrix as we have in the RHS side. So by using the property of multiplication of two matrices i.e. $\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
g \\
h \\
\end{matrix} \right]=\left[ \begin{matrix}
ag+bh \\
cg+dh \\
eg+fh \\
\end{matrix} \right]$, we will have;
\[\begin{align}
& \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
2\times 2+(-4)\times 2 \\
4\times 1+(-2)\times 2 \\
(-6)\times 1+2\times 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
4-8 \\
4-4 \\
-6+4 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
-4 \\
0 \\
-2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}\]
On comparing the above result we have $-4=x-3$, $0=y-1v$and $-2=2z$ from where we can calculate the value of $x,y,z$. So
$\begin{align}
& -4=x-3 \\
&\Rightarrow x= -4+3 \\
&\Rightarrow x= -1 \\
\end{align}$
So, we have $x=-1$
Now to find ‘y’ we have $0=y-1$, on simplifying it we have
$\begin{align}
&\Rightarrow 0=y-1 \\
&\Rightarrow y=1 \\
\end{align}$
Hence we got $y=1$
Now to find ‘z’ we have $-2=2z$, on simplifying it we have;
$\begin{align}
& -2=2z \\
&\Rightarrow z=\dfrac{-2}{2} \\
&\Rightarrow z=-1 \\
\end{align}$
Hence, we got $z=-1$
Hence we got the answer i.e. $x= -1$, $y=1$ and $z=-1$
Note: Go through the identity of matrices very well, as they are required to solve the type of question. Avoid making mistakes while multiplying matrices as rows of matrix get multiplied by the column of the 2nd matrix.
Complete step-by-step solution:
So moving ahead with question which we have i.e. \[\left\{ 3\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
2 & 2 \\
\end{matrix} \right]-4\left[ \begin{matrix}
1 & 1 \\
-1 & 2 \\
3 & 1 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]\]
On solving the LHS side matrix, by using the identity$x\left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]=\left[ \begin{matrix}
xa & bx \\
cx & dx \\
ex & fx \\
\end{matrix} \right]$.
we will have;
$\left\{ \left[ \begin{matrix}
6 & 0 \\
0 & 6 \\
6 & 6 \\
\end{matrix} \right]-\left[ \begin{matrix}
4 & 4 \\
-4 & 8 \\
12 & 4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right]$
Now again using the identity of subtraction and addition of matrices in the LHS side i.e. \[\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right]-\left[ \begin{matrix}
g & h \\
i & j \\
k & l \\
\end{matrix} \right] \right\}=\left[ \begin{matrix}
a-g & b-h \\
c-i & d-j \\
e-k & f-l \\
\end{matrix} \right]\] , we will have;
$\begin{align}
& \left\{ \left[ \begin{matrix}
6-4 & 0-4 \\
0-(-4) & 6-8 \\
6-12 & 6-4 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left\{ \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}$
As still there are two matrices in the LHS side, so reduce them to a single matrix as we have in the RHS side. So by using the property of multiplication of two matrices i.e. $\left\{ \left[ \begin{matrix}
a & b \\
c & d \\
e & f \\
\end{matrix} \right] \right\}\left[ \begin{matrix}
g \\
h \\
\end{matrix} \right]=\left[ \begin{matrix}
ag+bh \\
cg+dh \\
eg+fh \\
\end{matrix} \right]$, we will have;
\[\begin{align}
& \left[ \begin{matrix}
2 & -4 \\
4 & -2 \\
-6 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
2\times 2+(-4)\times 2 \\
4\times 1+(-2)\times 2 \\
(-6)\times 1+2\times 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
4-8 \\
4-4 \\
-6+4 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
& \left[ \begin{matrix}
-4 \\
0 \\
-2 \\
\end{matrix} \right]=\left[ \begin{matrix}
x-3 \\
y-1 \\
2z \\
\end{matrix} \right] \\
\end{align}\]
On comparing the above result we have $-4=x-3$, $0=y-1v$and $-2=2z$ from where we can calculate the value of $x,y,z$. So
$\begin{align}
& -4=x-3 \\
&\Rightarrow x= -4+3 \\
&\Rightarrow x= -1 \\
\end{align}$
So, we have $x=-1$
Now to find ‘y’ we have $0=y-1$, on simplifying it we have
$\begin{align}
&\Rightarrow 0=y-1 \\
&\Rightarrow y=1 \\
\end{align}$
Hence we got $y=1$
Now to find ‘z’ we have $-2=2z$, on simplifying it we have;
$\begin{align}
& -2=2z \\
&\Rightarrow z=\dfrac{-2}{2} \\
&\Rightarrow z=-1 \\
\end{align}$
Hence, we got $z=-1$
Hence we got the answer i.e. $x= -1$, $y=1$ and $z=-1$
Note: Go through the identity of matrices very well, as they are required to solve the type of question. Avoid making mistakes while multiplying matrices as rows of matrix get multiplied by the column of the 2nd matrix.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE