
Find the value of $x$, $y$ and $z$ from the following equations.
(i) $\left[ \begin{matrix}
4 & 3 \\
x & 5 \\
\end{matrix} \right]=\left[ \begin{matrix}
y & z \\
1 & 5 \\
\end{matrix} \right]$
(ii) $\left[ \begin{matrix}
x+y & 2 \\
5+z & xy \\
\end{matrix} \right]=\left[ \begin{matrix}
6 & 2 \\
5 & 8 \\
\end{matrix} \right]$
(iii) $\left[ \begin{matrix}
x+y+z \\
x+z \\
y+z \\
\end{matrix} \right]=\left[ \begin{matrix}
9 \\
5 \\
7 \\
\end{matrix} \right]$
Answer
486.9k+ views
Hint: We will use the law of equality and equate each element which is at the same position corresponding to its matrix. After equating we will get equations and by solving those equations, we will get the required values.
Complete step by step answer:
(i)
Given $\left[ \begin{matrix}
4 & 3 \\
x & 5 \\
\end{matrix} \right]=\left[ \begin{matrix}
y & z \\
1 & 5 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$y=4$
Equating elements in first row second column of both the matrix, then we will get
$z=3$
Equating elements in second row and first column of both the matrix, then we will get
$x=1$
(ii)
Given $\left[ \begin{matrix}
x+y & 2 \\
5+z & xy \\
\end{matrix} \right]=\left[ \begin{matrix}
6 & 2 \\
5 & 8 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$x+y=6...\left( \text{i} \right)$
Equating elements in second row first column of both the matrix, then we will get
$\begin{align}
& z+5=5 \\
& \Rightarrow z=0 \\
\end{align}$
Equating elements in second row and second column of both the matrix, then we will get
$xy=8...\left( \text{ii} \right)$
Solving equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ by substituting the value $y=6-x$ from equation $\left( \text{i} \right)$, then we will get
$\begin{align}
& x\left( 6-x \right)=8 \\
& \Rightarrow 6x-{{x}^{2}}=8 \\
& \Rightarrow {{x}^{2}}-6x+8=0 \\
& \Rightarrow {{x}^{2}}-4x-2x+8=0 \\
& \Rightarrow x\left( x-4 \right)-2\left( x-4 \right)=0 \\
& \Rightarrow \left( x-4 \right)\left( x-2 \right)=0 \\
& \Rightarrow x=4\text{ or }x=2 \\
\end{align}$
If $x=4$, then the value of $y$ is $6-x=6-4=2$.
If $x=2$, then the value of $y$ is $6-x=6-2=4$.
(iii)
Given $\left[ \begin{matrix}
x+y+z \\
x+z \\
y+z \\
\end{matrix} \right]=\left[ \begin{matrix}
9 \\
5 \\
7 \\
\end{matrix} \right]$
Equating the terms in first row first column then we will have
$x+y+z=9....\left( \text{a} \right)$
Equating the terms in second row first column then we will have
$x+z=5....\left( \text{b} \right)$
Equating the terms in third row first column then we will have
$y+z=7....\left( \text{c} \right)$
Reducing the equation $\left( a \right)$ by substituting $x=5-z$ from equation $\left( \text{b} \right)$, then we will get
$\begin{align}
& x+y+z=9 \\
& \Rightarrow 5-z+y+z=9 \\
& \Rightarrow y=9-5 \\
& \Rightarrow y=4 \\
\end{align}$
Now the value of $z$ from equation $\left( \text{c} \right)$ is given by
$\begin{align}
& y+z=7 \\
& \Rightarrow 4+z=7 \\
& \Rightarrow z=7-4 \\
& \Rightarrow z=3 \\
\end{align}$
$\therefore $ $x=5-z=5-3=2$.
Note: Law of equality for matrices only applies when the both the matrices have the same dimensions. So, we need to check the dimensions of the given matrices before going to solve some other problems.
Complete step by step answer:
(i)
Given $\left[ \begin{matrix}
4 & 3 \\
x & 5 \\
\end{matrix} \right]=\left[ \begin{matrix}
y & z \\
1 & 5 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$y=4$
Equating elements in first row second column of both the matrix, then we will get
$z=3$
Equating elements in second row and first column of both the matrix, then we will get
$x=1$
(ii)
Given $\left[ \begin{matrix}
x+y & 2 \\
5+z & xy \\
\end{matrix} \right]=\left[ \begin{matrix}
6 & 2 \\
5 & 8 \\
\end{matrix} \right]$
Equating elements in first row first column of both the matrix, then we will get
$x+y=6...\left( \text{i} \right)$
Equating elements in second row first column of both the matrix, then we will get
$\begin{align}
& z+5=5 \\
& \Rightarrow z=0 \\
\end{align}$
Equating elements in second row and second column of both the matrix, then we will get
$xy=8...\left( \text{ii} \right)$
Solving equations $\left( \text{i} \right)$ and $\left( \text{ii} \right)$ by substituting the value $y=6-x$ from equation $\left( \text{i} \right)$, then we will get
$\begin{align}
& x\left( 6-x \right)=8 \\
& \Rightarrow 6x-{{x}^{2}}=8 \\
& \Rightarrow {{x}^{2}}-6x+8=0 \\
& \Rightarrow {{x}^{2}}-4x-2x+8=0 \\
& \Rightarrow x\left( x-4 \right)-2\left( x-4 \right)=0 \\
& \Rightarrow \left( x-4 \right)\left( x-2 \right)=0 \\
& \Rightarrow x=4\text{ or }x=2 \\
\end{align}$
If $x=4$, then the value of $y$ is $6-x=6-4=2$.
If $x=2$, then the value of $y$ is $6-x=6-2=4$.
(iii)
Given $\left[ \begin{matrix}
x+y+z \\
x+z \\
y+z \\
\end{matrix} \right]=\left[ \begin{matrix}
9 \\
5 \\
7 \\
\end{matrix} \right]$
Equating the terms in first row first column then we will have
$x+y+z=9....\left( \text{a} \right)$
Equating the terms in second row first column then we will have
$x+z=5....\left( \text{b} \right)$
Equating the terms in third row first column then we will have
$y+z=7....\left( \text{c} \right)$
Reducing the equation $\left( a \right)$ by substituting $x=5-z$ from equation $\left( \text{b} \right)$, then we will get
$\begin{align}
& x+y+z=9 \\
& \Rightarrow 5-z+y+z=9 \\
& \Rightarrow y=9-5 \\
& \Rightarrow y=4 \\
\end{align}$
Now the value of $z$ from equation $\left( \text{c} \right)$ is given by
$\begin{align}
& y+z=7 \\
& \Rightarrow 4+z=7 \\
& \Rightarrow z=7-4 \\
& \Rightarrow z=3 \\
\end{align}$
$\therefore $ $x=5-z=5-3=2$.
Note: Law of equality for matrices only applies when the both the matrices have the same dimensions. So, we need to check the dimensions of the given matrices before going to solve some other problems.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
