
Find the value of the series \[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
A.\[\dfrac{\pi }{4}\]
B.\[\dfrac{\pi }{3}\]
C.\[\dfrac{\pi }{2}\]
D.\[\dfrac{\pi }{5}\]
Answer
217.5k+ views
Hint First write the nth term of the given series. Then convert the nth term to tangent function. Then set the obtained expression in the form \[{\tan ^{ - 1}}(\dfrac{{A + B}}{{1 - AB}})\] so that we can write it as \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B\] and then substitute the values for \[n = 1,2,3,...\] and calculate to obtain the required result.
Formula Used:
1.\[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\]
2. \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
3.\[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\]
4.\[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\]
Complete step by step solution
The given series is,
\[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
\[ = \sum\limits_{n = 1}^\infty {{{\cot }^{ - 1}}\left( {2.{n^2}} \right)} \]
Use the formula \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\] to convert the expression into a tangent function.
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{n^2}}}} \right)} \]
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{(1 + 2n) + (1 - 2n)}}{{1 - (1 + 2n)(1 - 2n)}}} \right)} \]
Use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) = {\tan ^{ - 1}}A + {\tan ^{ - 1}}B\]for further calculation.
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\]
Substitute the values for \[n = 1,2,3,...\]in the expression \[\sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\] to obtain the required answer.
\[ = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}5 - {\tan ^{ - 1}}3 + {\tan ^{ - 1}}7 - {\tan ^{ - 1}}5 + .... + {\tan ^{ - 1}}\infty \]
\[ = - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}\infty \]
Put \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\] and calculate.
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\]
\[ = \dfrac{\pi }{4}\]
The correct option is A.
Note When we are solving this type of problems we use a lot of formulas in one question, so to solve this type of problems students must have the knowledge of these formulas otherwise they will not be unable to solve these problems.
Formula Used:
1.\[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\]
2. \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
3.\[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\]
4.\[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\]
Complete step by step solution
The given series is,
\[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
\[ = \sum\limits_{n = 1}^\infty {{{\cot }^{ - 1}}\left( {2.{n^2}} \right)} \]
Use the formula \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\] to convert the expression into a tangent function.
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{n^2}}}} \right)} \]
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{(1 + 2n) + (1 - 2n)}}{{1 - (1 + 2n)(1 - 2n)}}} \right)} \]
Use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) = {\tan ^{ - 1}}A + {\tan ^{ - 1}}B\]for further calculation.
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\]
Substitute the values for \[n = 1,2,3,...\]in the expression \[\sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\] to obtain the required answer.
\[ = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}5 - {\tan ^{ - 1}}3 + {\tan ^{ - 1}}7 - {\tan ^{ - 1}}5 + .... + {\tan ^{ - 1}}\infty \]
\[ = - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}\infty \]
Put \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\] and calculate.
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\]
\[ = \dfrac{\pi }{4}\]
The correct option is A.
Note When we are solving this type of problems we use a lot of formulas in one question, so to solve this type of problems students must have the knowledge of these formulas otherwise they will not be unable to solve these problems.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

