
Find the value of the integral of the function
$\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}$
Answer
583.2k+ views
Hint: We solve this question by first considering the given integral. Then we assume that $1+{{x}^{2}}=t$. Then we differentiate it and find the value of $dx$ in terms of $dt$. Then we convert the integral in terms of x into the integral with $t$ as variable and simplify it using the formula, ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. Then we consider the obtained integral and then solve it using the formula for integration, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$ and another formula for integration, $\int{\dfrac{1}{x}dx}=\log x+c$. Then we get the value of integral in terms of variable $t$. Then we substitute the value of $t$ we have assumed in the start, that is $t=1+{{x}^{2}}$ and substitute it in the obtained value to get the final answer.
Complete step by step answer:
Now let us consider given the integral
$\int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}$
Now, let us assume that $1+{{x}^{2}}=t$.
Now let us differentiate it. Then we get,
$\begin{align}
& \Rightarrow 2xdx=dt \\
& \Rightarrow xdx=\dfrac{dt}{2} \\
\end{align}$
Now, we can write the integral as,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{2}}}{\left( 1+{{x}^{2}} \right)}xdx} \\
& \Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{t}\dfrac{dt}{2}} \\
\end{align}$
So, we get the integral as,
$\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}...........\left( 1 \right)$
Now, let us consider the integral $\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}$.
Now let us consider the formula,
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Using this we can simplify the above integral as,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{\left( 1+{{t}^{2}}+2t \right)\left( t-1 \right)}{2t}dt} \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{t+{{t}^{3}}+2{{t}^{2}}-1-{{t}^{2}}-2t}{2t}dt} \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{{{t}^{3}}+{{t}^{2}}-t-1}{2t}dt} \\
\end{align}$
Simplifying it we get,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\int{\dfrac{{{t}^{3}}+{{t}^{2}}-t-1}{t}dt} \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\int{\left( {{t}^{2}}+t-1-\dfrac{1}{t} \right)dt} \\
\end{align}$
We can separate the polynomial on the right-hand side of integral and write it as,
$\Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\left( \int{{{t}^{2}}dt}+\int{tdt}-\int{1dt}-\int{\dfrac{1}{t}dt} \right)$
Now, let us consider the formulas for integration,
$\begin{align}
& \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c} \\
& \int{\dfrac{1}{x}dx}=\log x+c \\
\end{align}$
Using it we can write the above equation as,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+\dfrac{{{t}^{2}}}{2}-t-\log t \right)+c \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{{{t}^{3}}}{6}+\dfrac{{{t}^{2}}}{4}-\dfrac{t}{2}-\dfrac{\log t}{2}+c \\
\end{align}$
Now let us substitute this value in equation (1). Then we get,
$\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\dfrac{{{t}^{3}}}{6}+\dfrac{{{t}^{2}}}{4}-\dfrac{t}{2}-\dfrac{\log t}{2}+c$
Now, let us substitute the value of t in terms of x, that is $1+{{x}^{2}}=t$.
Then we get the value of the given integral as,
$\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\dfrac{{{\left( 1+{{x}^{2}} \right)}^{3}}}{6}+\dfrac{{{\left( 1+{{x}^{2}} \right)}^{2}}}{4}-\dfrac{\left( 1+{{x}^{2}} \right)}{2}-\dfrac{\log \left( 1+{{x}^{2}} \right)}{2}+c$
Hence the answer is $\dfrac{{{\left( 1+{{x}^{2}} \right)}^{3}}}{6}+\dfrac{{{\left( 1+{{x}^{2}} \right)}^{2}}}{4}-\dfrac{\left( 1+{{x}^{2}} \right)}{2}-\dfrac{\log \left( 1+{{x}^{2}} \right)}{2}+c$.
Note: The common mistake that one makes while solving this problem is after assuming that $1+{{x}^{2}}=t$, one might forget to differentiate it and convert $dx$ to $dt$ and write the integral as,
\[\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}{{\left( t-1 \right)}^{\dfrac{3}{2}}}}{t}dt}\]
So, one must remember to find the value of $dx$ and convert it to $dt$ and then solve the integral.
Complete step by step answer:
Now let us consider given the integral
$\int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}$
Now, let us assume that $1+{{x}^{2}}=t$.
Now let us differentiate it. Then we get,
$\begin{align}
& \Rightarrow 2xdx=dt \\
& \Rightarrow xdx=\dfrac{dt}{2} \\
\end{align}$
Now, we can write the integral as,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{2}}}{\left( 1+{{x}^{2}} \right)}xdx} \\
& \Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{t}\dfrac{dt}{2}} \\
\end{align}$
So, we get the integral as,
$\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}...........\left( 1 \right)$
Now, let us consider the integral $\int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}$.
Now let us consider the formula,
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Using this we can simplify the above integral as,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{\left( 1+{{t}^{2}}+2t \right)\left( t-1 \right)}{2t}dt} \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{t+{{t}^{3}}+2{{t}^{2}}-1-{{t}^{2}}-2t}{2t}dt} \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\int{\dfrac{{{t}^{3}}+{{t}^{2}}-t-1}{2t}dt} \\
\end{align}$
Simplifying it we get,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\int{\dfrac{{{t}^{3}}+{{t}^{2}}-t-1}{t}dt} \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\int{\left( {{t}^{2}}+t-1-\dfrac{1}{t} \right)dt} \\
\end{align}$
We can separate the polynomial on the right-hand side of integral and write it as,
$\Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\left( \int{{{t}^{2}}dt}+\int{tdt}-\int{1dt}-\int{\dfrac{1}{t}dt} \right)$
Now, let us consider the formulas for integration,
$\begin{align}
& \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c} \\
& \int{\dfrac{1}{x}dx}=\log x+c \\
\end{align}$
Using it we can write the above equation as,
$\begin{align}
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+\dfrac{{{t}^{2}}}{2}-t-\log t \right)+c \\
& \Rightarrow \int{\dfrac{{{\left( 1+t \right)}^{2}}\left( t-1 \right)}{2t}dt}=\dfrac{{{t}^{3}}}{6}+\dfrac{{{t}^{2}}}{4}-\dfrac{t}{2}-\dfrac{\log t}{2}+c \\
\end{align}$
Now let us substitute this value in equation (1). Then we get,
$\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\dfrac{{{t}^{3}}}{6}+\dfrac{{{t}^{2}}}{4}-\dfrac{t}{2}-\dfrac{\log t}{2}+c$
Now, let us substitute the value of t in terms of x, that is $1+{{x}^{2}}=t$.
Then we get the value of the given integral as,
$\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\dfrac{{{\left( 1+{{x}^{2}} \right)}^{3}}}{6}+\dfrac{{{\left( 1+{{x}^{2}} \right)}^{2}}}{4}-\dfrac{\left( 1+{{x}^{2}} \right)}{2}-\dfrac{\log \left( 1+{{x}^{2}} \right)}{2}+c$
Hence the answer is $\dfrac{{{\left( 1+{{x}^{2}} \right)}^{3}}}{6}+\dfrac{{{\left( 1+{{x}^{2}} \right)}^{2}}}{4}-\dfrac{\left( 1+{{x}^{2}} \right)}{2}-\dfrac{\log \left( 1+{{x}^{2}} \right)}{2}+c$.
Note: The common mistake that one makes while solving this problem is after assuming that $1+{{x}^{2}}=t$, one might forget to differentiate it and convert $dx$ to $dt$ and write the integral as,
\[\Rightarrow \int{\dfrac{{{\left( 2+{{x}^{2}} \right)}^{2}}{{x}^{3}}}{\left( 1+{{x}^{2}} \right)}dx}=\int{\dfrac{{{\left( 1+t \right)}^{2}}{{\left( t-1 \right)}^{\dfrac{3}{2}}}}{t}dt}\]
So, one must remember to find the value of $dx$ and convert it to $dt$ and then solve the integral.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

