Answer
Verified
475.8k+ views
Hint-We will make use of the formula of integration by parts and solve it.
We have the integral I= $\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx$
Since we have the limit of integral from 1 to 4,we will split the limits and write the integral
So, we get
I=\[\] \[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } [x]dx\]
Greatest integer function is discontinuous at all integers. So we should write the definition of
the function in each of the smaller limits.So,we can write the integral I as
I=\[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } 1dx + \;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } 2dx + \;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } 3dx\]
Let us solve this integral by putting the value of ${\log _e}1 = 0$ ,since \[{\log _e}2\] and \[{\log _e}3\] are constants take it out of the integral and solve
I=$\int\limits_1^2 0 dx$ +${\log _e}2\int\limits_2^3 {dx} $ +${\log _e}3\int\limits_3^4 {dx} $
We know that integral 1 dx is equal to x
So, on solving the integral further ,we get
I= 0+${\log _e}2[x]_1^2 + {\log _e}3[x]_3^4$
On applying limits, we get
I=${\log _e}2$$[2 - 1]$ +${\log _e}3[4 - 3]$
So , we get I= ${\log _e}2 + {\log _e}3$
But we know the formula which says
${\log _e}a + {\log _e}b = {\log _e}ab$
Therefore, we can write
${\log _e}2 + {\log _e}3$=${\log _e}6$
So, therefore the value of the integral I=${\log _e}6$=ln6
So, option C is the correct answer
Note: It is possible to integrate to the greatest integer functions only when the limits are
given, if the limits are not given, we cannot solve the problem.
We have the integral I= $\int\limits_1^4 {\mathop {\log }\nolimits_e } [x]dx$
Since we have the limit of integral from 1 to 4,we will split the limits and write the integral
So, we get
I=\[\] \[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } [x]dx\] +\[\;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } [x]dx\]
Greatest integer function is discontinuous at all integers. So we should write the definition of
the function in each of the smaller limits.So,we can write the integral I as
I=\[\;\;\int\limits_1^2 {\mathop {\log }\nolimits_e } 1dx + \;\;\int\limits_2^3 {\mathop {\log }\nolimits_e } 2dx + \;\;\int\limits_3^4 {\mathop {\log }\nolimits_e } 3dx\]
Let us solve this integral by putting the value of ${\log _e}1 = 0$ ,since \[{\log _e}2\] and \[{\log _e}3\] are constants take it out of the integral and solve
I=$\int\limits_1^2 0 dx$ +${\log _e}2\int\limits_2^3 {dx} $ +${\log _e}3\int\limits_3^4 {dx} $
We know that integral 1 dx is equal to x
So, on solving the integral further ,we get
I= 0+${\log _e}2[x]_1^2 + {\log _e}3[x]_3^4$
On applying limits, we get
I=${\log _e}2$$[2 - 1]$ +${\log _e}3[4 - 3]$
So , we get I= ${\log _e}2 + {\log _e}3$
But we know the formula which says
${\log _e}a + {\log _e}b = {\log _e}ab$
Therefore, we can write
${\log _e}2 + {\log _e}3$=${\log _e}6$
So, therefore the value of the integral I=${\log _e}6$=ln6
So, option C is the correct answer
Note: It is possible to integrate to the greatest integer functions only when the limits are
given, if the limits are not given, we cannot solve the problem.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE