
Find the value of the integral function $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
A. $\dfrac{1}{4}\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
B. $\dfrac{1}{2}\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
C. $\log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
D. $\dfrac{1}{2}\log \left| {1 - \tan \dfrac{x}{2}} \right| + C$
Answer
232.8k+ views
Hint: In this case, we must apply the $\sin x$ and $\cos x$ trigonometric formulas in the form of $\tan x$. By substituting $x$ with $\dfrac{x}{2}$ and modifying the changes to the trigonometric identity and the $\cos 2x$ and $\sin 2x$ formulas. Finally, we must use the basic integration formula to determine the value.
Formula Used:
The trigonometric formula are given as
1. $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$
2. $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$
3. $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $
4. $1 + {\tan ^2}x = {\sec ^2}x$
Complete step by step solution:
Given that the integral is $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
Let us consider $I = \int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $ —(1)
As we know that, $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$ and we can express $\cos x$ as
$\cos x = \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$
Also, we know that $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$ and we an express $\sin x$ as $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$.
Now, we will substitute these values in equation (1), we get
$I = \int {\dfrac{{dx}}{{1 + \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} $
Further, we will simplify the above expression, we get
$I = \int {\dfrac{{dx}}{{\dfrac{{1 + {{\tan}^2}\dfrac{x}{2} + 1 - {{\tan}^2}\dfrac{x}{2} + 2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} \\I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2 + 2\tan \dfrac{x}{2}}}}$
Furthermore, we will take out $2$ as common from the denominator, we get
$I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $
Now, we will use the formula $1 + {\tan ^2}x = {\sec ^2}x$ and express
$1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}$, we get
$I = \int {\dfrac{{{{\sec}^2}\dfrac{x}{2}dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $ —(2)
Further, let us assume $\tan \dfrac{x}{2} = t$ and the derivative of $\tan \dfrac{x}{2}$ is $\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$.
Now, we will substitute the values in equation (2), we get
$I = \int {\dfrac{{dt}}{{1 + t}}} $
Furthermore, we will apply the formula $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $, we get
$I = \log \left| {1 + t} \right| + C$
Again, we will substitute $t = \tan \dfrac{x}{2}$, we get
$I = \log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
Option ‘C’ is correct
Note: In these types of questions, we should remember the conversions of trigonometric functions and trigonometric identity also. We should be careful while adjusting the formulas of trigonometric functions so that no error will occur and also know the basic differentiation formulas and integration formulas.
Formula Used:
The trigonometric formula are given as
1. $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$
2. $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$
3. $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $
4. $1 + {\tan ^2}x = {\sec ^2}x$
Complete step by step solution:
Given that the integral is $\int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $.
Let us consider $I = \int {\dfrac{{dx}}{{1 + \cos x + \sin x}}} $ —(1)
As we know that, $\cos 2x = \dfrac{{1 - {{\tan}^2}x}}{{1 + {{\tan}^2}x}}$ and we can express $\cos x$ as
$\cos x = \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$
Also, we know that $\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan}^2}x}}$ and we an express $\sin x$ as $\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}$.
Now, we will substitute these values in equation (1), we get
$I = \int {\dfrac{{dx}}{{1 + \dfrac{{1 - {{\tan}^2}\dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}} + \dfrac{{2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} $
Further, we will simplify the above expression, we get
$I = \int {\dfrac{{dx}}{{\dfrac{{1 + {{\tan}^2}\dfrac{x}{2} + 1 - {{\tan}^2}\dfrac{x}{2} + 2\tan \dfrac{x}{2}}}{{1 + {{\tan}^2}\dfrac{x}{2}}}}}} \\I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2 + 2\tan \dfrac{x}{2}}}}$
Furthermore, we will take out $2$ as common from the denominator, we get
$I = \int {\dfrac{{\left( {1 + {{\tan}^2}\dfrac{x}{2}} \right)dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $
Now, we will use the formula $1 + {\tan ^2}x = {\sec ^2}x$ and express
$1 + {\tan ^2}\dfrac{x}{2} = {\sec ^2}\dfrac{x}{2}$, we get
$I = \int {\dfrac{{{{\sec}^2}\dfrac{x}{2}dx}}{{2\left( {1 + \tan \dfrac{x}{2}} \right)}}} $ —(2)
Further, let us assume $\tan \dfrac{x}{2} = t$ and the derivative of $\tan \dfrac{x}{2}$ is $\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$.
Now, we will substitute the values in equation (2), we get
$I = \int {\dfrac{{dt}}{{1 + t}}} $
Furthermore, we will apply the formula $\int {\dfrac{{dt}}{t} = \log \left| t \right| + c} $, we get
$I = \log \left| {1 + t} \right| + C$
Again, we will substitute $t = \tan \dfrac{x}{2}$, we get
$I = \log \left| {1 + \tan \dfrac{x}{2}} \right| + C$
Option ‘C’ is correct
Note: In these types of questions, we should remember the conversions of trigonometric functions and trigonometric identity also. We should be careful while adjusting the formulas of trigonometric functions so that no error will occur and also know the basic differentiation formulas and integration formulas.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

