Find the value of the following integral
\[\int{\dfrac{1}{x{{\left( \log x \right)}^{n}}}dx}\]
Last updated date: 25th Mar 2023
•
Total views: 307.5k
•
Views today: 6.84k
Answer
307.5k+ views
Hint: Here, to find the value of the given integral, first of all take log x = t and then substitute all the variables of x that are \[\dfrac{dx}{x}\] and \[\log x\] in terms of t in the given integral.
Complete step-by-step answer:
Here we have to find the value of \[\int{\dfrac{1}{x{{\left( \log x \right)}^{n}}}dx}\].
Let us consider the given integral as
\[I=\int{\dfrac{1.dx}{x{{\left( \log x \right)}^{n}}}}....\left( i \right)\]
Now, as we can see that this integral contains both \[\dfrac{1}{x}\] and \[\log x\], therefore let us consider log x = t
Since, we know that \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\], therefore by differentiating both sides, we get,
\[\dfrac{1dx}{xdt}=1\]
Here, by multiplying dt on both sides, we will get,
\[\dfrac{1dx}{xdt}.dt=1.dt\]
By cancelling the like terms from RHS, we will get,
\[\dfrac{dx}{x}=dt\]
Now, we will put the values of \[\dfrac{dx}{x}\text{ and }\log x\]in terms of t in equation (i). We get
\[I=\int{\dfrac{dt}{{{\left( t \right)}^{n}}}}\]
Since, we know that,
\[\dfrac{1}{{{a}^{n}}}={{a}^{-n}}\]
Therefore, we can write the integral as,
\[I=\int{\left( {{t}^{-n}} \right)dt}\]
Now, we know that
\[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+k}\]
So we get the integral as,
\[I=\dfrac{{{t}^{-n+1}}}{-n+1}+k\]
We know that we should always convert the
So, here as we had assumed that log x = t, so now, we will replace “t” in terms of “x”. So, we will get the integral as
\[I=\dfrac{{{\left( \log x \right)}^{-n+1}}}{\left( -n+1 \right)}+k\]
Therefore, we finally get the value of integral as,
\[I=\int{\dfrac{1.dx}{x{{\left( \log x \right)}^{n}}}=\dfrac{{{\left( \log x \right)}^{1-n}}}{\left( 1-n \right)}}+k\]
Note: Whenever \[\dfrac{1}{x}\text{ and }\log x\] come together in question, students should always use this approach of putting log x = t and then differentiating it to get \[\dfrac{1}{x}dx\] which makes the solution feasible. Also, students should always remember to convert the assumed variable into the original variable at the end of the solution, in this question, it is t into x.
Complete step-by-step answer:
Here we have to find the value of \[\int{\dfrac{1}{x{{\left( \log x \right)}^{n}}}dx}\].
Let us consider the given integral as
\[I=\int{\dfrac{1.dx}{x{{\left( \log x \right)}^{n}}}}....\left( i \right)\]
Now, as we can see that this integral contains both \[\dfrac{1}{x}\] and \[\log x\], therefore let us consider log x = t
Since, we know that \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\], therefore by differentiating both sides, we get,
\[\dfrac{1dx}{xdt}=1\]
Here, by multiplying dt on both sides, we will get,
\[\dfrac{1dx}{xdt}.dt=1.dt\]
By cancelling the like terms from RHS, we will get,
\[\dfrac{dx}{x}=dt\]
Now, we will put the values of \[\dfrac{dx}{x}\text{ and }\log x\]in terms of t in equation (i). We get
\[I=\int{\dfrac{dt}{{{\left( t \right)}^{n}}}}\]
Since, we know that,
\[\dfrac{1}{{{a}^{n}}}={{a}^{-n}}\]
Therefore, we can write the integral as,
\[I=\int{\left( {{t}^{-n}} \right)dt}\]
Now, we know that
\[\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+k}\]
So we get the integral as,
\[I=\dfrac{{{t}^{-n+1}}}{-n+1}+k\]
We know that we should always convert the
So, here as we had assumed that log x = t, so now, we will replace “t” in terms of “x”. So, we will get the integral as
\[I=\dfrac{{{\left( \log x \right)}^{-n+1}}}{\left( -n+1 \right)}+k\]
Therefore, we finally get the value of integral as,
\[I=\int{\dfrac{1.dx}{x{{\left( \log x \right)}^{n}}}=\dfrac{{{\left( \log x \right)}^{1-n}}}{\left( 1-n \right)}}+k\]
Note: Whenever \[\dfrac{1}{x}\text{ and }\log x\] come together in question, students should always use this approach of putting log x = t and then differentiating it to get \[\dfrac{1}{x}dx\] which makes the solution feasible. Also, students should always remember to convert the assumed variable into the original variable at the end of the solution, in this question, it is t into x.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
