
Find the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$
Answer
579k+ views
Hint: We know the range of both the inverse trigonometric functions and also, $\sqrt{3}$ and $-\sqrt{3}$ are basic values for tan and cot inverse functions, i.e. , they are the kind of values whose values are known when they are put in the cot and tan inverse functions. Thus, we can find their values very easily. So we will find these individual values in the range of these functions and then subtract them. This will give us our answer.
Complete step by step answer:
Now, we know that the range of ${{\tan }^{-1}}x$ is $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
We also know that in the provided range the value of ${{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3}$
Now, we also know that the range of ${{\cot }^{-1}}x$ is $\left( 0,\pi \right)$
We also know that in the provided range the value of ${{\cot }^{-1}}\left( -\sqrt{3} \right)=\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$
Now since we know the value of both ${{\tan }^{-1}}\left( \sqrt{3} \right)$ and ${{\cot }^{-1}}\left( -\sqrt{3} \right)$ we can subtract these two values and obtain our required values.
Thus, the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$is given as:
$\begin{align}
& \Rightarrow \dfrac{\pi }{3}-\dfrac{5\pi }{6} \\
& \Rightarrow -\dfrac{3\pi }{6} \\
& \Rightarrow -\dfrac{\pi }{2} \\
\end{align}$
Thus, the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$ is $-\dfrac{\pi }{2}$
Note: This question can also be done in the following way:
We know that the value of ${{\cot }^{-1}}\left( -x \right)$ is given as $\pi -{{\cot }^{-1}}x$
So we can write the value of ${{\cot }^{-1}}\left( -\sqrt{3} \right)$ in the same way.
Thus, the value of ${{\cot }^{-1}}\left( -\sqrt{3} \right)=\pi -{{\cot }^{-1}}\left( \sqrt{3} \right)$
So, the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$becomes:
$\begin{align}
& \Rightarrow {{\tan }^{-1}}\sqrt{3}-\left( \pi -{{\cot }^{-1}}\left( \sqrt{3} \right) \right) \\
& \Rightarrow {{\tan }^{-1}}\sqrt{3}-\pi +{{\cot }^{-1}}\left( \sqrt{3} \right) \\
& \Rightarrow {{\tan }^{-1}}\sqrt{3}+{{\cot }^{-1}}\left( \sqrt{3} \right)-\pi \\
\end{align}$
Now, we know that the value of ${{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}$ for all $x\in \mathbb{R}$
Thus the value of ${{\tan }^{-1}}\sqrt{3}+{{\cot }^{-1}}\left( \sqrt{3} \right)-\pi $ is given as:
$\begin{align}
& \Rightarrow \dfrac{\pi }{2}-\pi \\
& \Rightarrow -\dfrac{\pi }{2} \\
\end{align}$
Complete step by step answer:
Now, we know that the range of ${{\tan }^{-1}}x$ is $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
We also know that in the provided range the value of ${{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3}$
Now, we also know that the range of ${{\cot }^{-1}}x$ is $\left( 0,\pi \right)$
We also know that in the provided range the value of ${{\cot }^{-1}}\left( -\sqrt{3} \right)=\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$
Now since we know the value of both ${{\tan }^{-1}}\left( \sqrt{3} \right)$ and ${{\cot }^{-1}}\left( -\sqrt{3} \right)$ we can subtract these two values and obtain our required values.
Thus, the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$is given as:
$\begin{align}
& \Rightarrow \dfrac{\pi }{3}-\dfrac{5\pi }{6} \\
& \Rightarrow -\dfrac{3\pi }{6} \\
& \Rightarrow -\dfrac{\pi }{2} \\
\end{align}$
Thus, the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$ is $-\dfrac{\pi }{2}$
Note: This question can also be done in the following way:
We know that the value of ${{\cot }^{-1}}\left( -x \right)$ is given as $\pi -{{\cot }^{-1}}x$
So we can write the value of ${{\cot }^{-1}}\left( -\sqrt{3} \right)$ in the same way.
Thus, the value of ${{\cot }^{-1}}\left( -\sqrt{3} \right)=\pi -{{\cot }^{-1}}\left( \sqrt{3} \right)$
So, the value of ${{\tan }^{-1}}\sqrt{3}-{{\cot }^{-1}}\left( -\sqrt{3} \right)$becomes:
$\begin{align}
& \Rightarrow {{\tan }^{-1}}\sqrt{3}-\left( \pi -{{\cot }^{-1}}\left( \sqrt{3} \right) \right) \\
& \Rightarrow {{\tan }^{-1}}\sqrt{3}-\pi +{{\cot }^{-1}}\left( \sqrt{3} \right) \\
& \Rightarrow {{\tan }^{-1}}\sqrt{3}+{{\cot }^{-1}}\left( \sqrt{3} \right)-\pi \\
\end{align}$
Now, we know that the value of ${{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}$ for all $x\in \mathbb{R}$
Thus the value of ${{\tan }^{-1}}\sqrt{3}+{{\cot }^{-1}}\left( \sqrt{3} \right)-\pi $ is given as:
$\begin{align}
& \Rightarrow \dfrac{\pi }{2}-\pi \\
& \Rightarrow -\dfrac{\pi }{2} \\
\end{align}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

