
Find the value of magnetic field between the plates of a capacitor at distance $1m$ from the center where, the electric field varies by ${{10}^{10}}V{{m}^{-1}}$ per second.
(A). $5.56\times {{10}^{-8}}T$
(B). $5.56\times {{10}^{-3}}T$
(C). $5.56\mu T$
(D). $5.56T$
Answer
447.9k+ views
Hint: The electric field in a parallel plate capacitor varies as ${{10}^{10}}V{{m}^{-1}}$. The magnetic field inside the capacitor depends on absolute permittivity, absolute permeability and rate of change of magnetic field. Substituting corresponding values in the relation, we can calculate the magnetic field. Also the product of permittivity and permeability is the reciprocal of square of speed of light in air.
Formulas used:
${{c}^{2}}=\dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}}$
$B=\dfrac{{{\mu }_{0}}{{\varepsilon }_{0}}}{2}\dfrac{dE}{dt}$
Complete step by step answer:
The electric field in the capacitor is changing by ${{10}^{10}}V{{m}^{-1}}$ per second. Therefore,
$\dfrac{dE}{dt}={{10}^{10}}V{{m}^{-1}}$
We have to calculate magnetic field at a point $1m$ from the center
We know that,
${{c}^{2}}=\dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}}$
Here, $c$ is the speed of light in air
${{\mu }_{0}}$ is the permeability of free space
${{\varepsilon }_{0}}$ is the permittivity of free space
The permeability of a medium is the measure of how much it gets magnetized when kept in an external magnetic field.
The permittivity of a medium is the measure of electrical energy stored in the presence of an electric field.
We know that, $c=3\times {{10}^{8}}m{{s}^{-1}}$
Substituting in above equation, we get,
$\begin{align}
& {{(3\times {{10}^{8}})}^{2}}=\dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}} \\
& \Rightarrow {{\mu }_{0}}{{\varepsilon }_{0}}=\dfrac{1}{9\times {{10}^{16}}} \\
\end{align}$
Between the plates of a capacitor, the magnetic field is calculated as-
$B=\dfrac{{{\mu }_{0}}{{\varepsilon }_{0}}}{2}\dfrac{dE}{dt}$
Substituting given values in the above equation, we get,
$\begin{align}
& B=\dfrac{{{\mu }_{0}}{{\varepsilon }_{0}}}{2}\dfrac{dE}{dt} \\
& \Rightarrow B=\dfrac{1}{9\times {{10}^{16}}\times 2}{{10}^{10}} \\
& \Rightarrow B=0.0556\times {{10}^{-6}}T \\
& \therefore B=5.56\times {{10}^{-8}}T \\
\end{align}$
Therefore, the magnetic field between the plates of capacitors is $5.56\times {{10}^{-8}}T$.
Hence, the correct option is (A).
Note: A parallel plate capacitor consists of two metals plates with a dielectric or free space between them and the plates are oppositely charged. The ability of a capacitor to store charge inside it is known as the capacitance. The capacitance of a parallel plate capacitor depends on its dimensions and the permittivity of the medium inside it.
Formulas used:
${{c}^{2}}=\dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}}$
$B=\dfrac{{{\mu }_{0}}{{\varepsilon }_{0}}}{2}\dfrac{dE}{dt}$
Complete step by step answer:
The electric field in the capacitor is changing by ${{10}^{10}}V{{m}^{-1}}$ per second. Therefore,
$\dfrac{dE}{dt}={{10}^{10}}V{{m}^{-1}}$
We have to calculate magnetic field at a point $1m$ from the center
We know that,
${{c}^{2}}=\dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}}$
Here, $c$ is the speed of light in air
${{\mu }_{0}}$ is the permeability of free space
${{\varepsilon }_{0}}$ is the permittivity of free space
The permeability of a medium is the measure of how much it gets magnetized when kept in an external magnetic field.
The permittivity of a medium is the measure of electrical energy stored in the presence of an electric field.
We know that, $c=3\times {{10}^{8}}m{{s}^{-1}}$
Substituting in above equation, we get,
$\begin{align}
& {{(3\times {{10}^{8}})}^{2}}=\dfrac{1}{{{\mu }_{0}}{{\varepsilon }_{0}}} \\
& \Rightarrow {{\mu }_{0}}{{\varepsilon }_{0}}=\dfrac{1}{9\times {{10}^{16}}} \\
\end{align}$
Between the plates of a capacitor, the magnetic field is calculated as-
$B=\dfrac{{{\mu }_{0}}{{\varepsilon }_{0}}}{2}\dfrac{dE}{dt}$
Substituting given values in the above equation, we get,
$\begin{align}
& B=\dfrac{{{\mu }_{0}}{{\varepsilon }_{0}}}{2}\dfrac{dE}{dt} \\
& \Rightarrow B=\dfrac{1}{9\times {{10}^{16}}\times 2}{{10}^{10}} \\
& \Rightarrow B=0.0556\times {{10}^{-6}}T \\
& \therefore B=5.56\times {{10}^{-8}}T \\
\end{align}$
Therefore, the magnetic field between the plates of capacitors is $5.56\times {{10}^{-8}}T$.
Hence, the correct option is (A).
Note: A parallel plate capacitor consists of two metals plates with a dielectric or free space between them and the plates are oppositely charged. The ability of a capacitor to store charge inside it is known as the capacitance. The capacitance of a parallel plate capacitor depends on its dimensions and the permittivity of the medium inside it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Why is the cell called the structural and functional class 12 biology CBSE

Which country did Danny Casey play for class 12 english CBSE
