
Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{4}$
Answer
233.1k+ views
Hint:
• Next, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$ and then we will use the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-\theta \right)$ is equal to $\cot \theta $.
• From this, we will obtain equation 2.
• Now we will add equations 1 and 2 and after that, we will split $\text{ }\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
• We will further take the LCM to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.
Formula Used: We will use the following formulas:
1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step by step solution: In this question, we are given:
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
We will now add equations (1) and (2) to get.
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
\end{align}$
Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
Take LCM in the denominator to get
$\begin{align}
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
\end{align}$
We will further integrate 1 with respect to $\theta $.
$\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
At last, substitute the values of the limit to get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Option ‘D’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
- • In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$. So, we will consider this as equation 1.
Formula Used: We will use the following formulas:
1) $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
2) $\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $
3) $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
Complete step by step solution: In this question, we are given:
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \left( \dfrac{\pi }{2}-\theta \right)}}$
By using the Cofunction identity of $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }}$ ….... (2)
We will now add equations (1) and (2) to get.
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\cot \theta }} \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\tan \theta }+\dfrac{1}{1+\cot \theta } \right)}d\theta \\
\end{align}$
Next, we will write $\cot \theta $ as $\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta $ as $\dfrac{\sin \theta }{\cos \theta }$.
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{1}{1+\dfrac{\sin \theta }{\cos \theta }}+\dfrac{1}{1+\dfrac{\cos \theta }{\sin \theta }} \right)}d\theta $
Take LCM in the denominator to get
$\begin{align}
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta }{\cos \theta +\sin \theta }+\dfrac{\sin \theta }{\sin \theta +\cos \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta } \right)}d\theta \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)d\theta } \\
\end{align}$
We will further integrate 1 with respect to $\theta $.
$\Rightarrow 2I=\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}$
At last, substitute the values of the limit to get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Option ‘D’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

