
Find the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \].
A \[\dfrac{\pi }{{12}}\]
B \[\dfrac{\pi }{2}\]
C \[\dfrac{\pi }{6}\]
D \[\dfrac{\pi }{4}\]
Answer
232.8k+ views
Hint: o find the value of the integration first concert the function in integrable form. Then integrate the function and apply the limits.
Formula used: \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integration \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \].
Consider, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]
Substitute \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \] as follows.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} \]
Now, separate square roots.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Now, simplify the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Take the inverse of the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …(1)
Apply the property to simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} }}} \]
Further write in the following way.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …(2)
Add equation (1) and equation (2)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \]
Now, the equation becomes as follows.
\[\begin{array}{l}2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx} \\2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \end{array}\]
Evaluate the equation.
\[2I = \left[ x \right]_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}\]
Apply the limit. Subtract lower limit from upper limit.
\[2I = \left[ {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right]\]
Simplify the bracket.
\[\begin{array}{l}2I = \left[ {\dfrac{{2\pi }}{6} - \dfrac{\pi }{6}} \right]\\2I = \dfrac{\pi }{6}\end{array}\]
Divide the equation by \[2\] on both sides.
\[I = \dfrac{\pi }{{12}}\]
Hence the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]is \[\dfrac{\pi }{{12}}\].
Thus, Option (A) is correct.
Note: The common mistake made by students is taking integration of \[\sqrt {\tan x} \] and substituting limits to find value of the integration which is the wrong method of finding a solution.
Formula used: \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integration \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \].
Consider, \[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]
Substitute \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] in \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \] as follows.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\dfrac{{\sin x}}{{\cos x}}} }}} \]
Now, separate square roots.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \dfrac{{\sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Now, simplify the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} }}}}} \]
Take the inverse of the denominator.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} \] …(1)
Apply the property to simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{6} + \dfrac{\pi }{3} - x} \right)} }}} \]
Further write in the following way.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} dx}}{{\sqrt {\cos \left( {\dfrac{\pi }{2} - x} \right)} + \sqrt {\sin \left( {\dfrac{\pi }{2} - x} \right)} }}} \]
Simplify the function.
\[I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \] …(2)
Add equation (1) and equation (2)
\[I + I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} dx}}{{\sqrt {\cos x} + \sqrt {\sin x} }}} + \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\sin x} dx}}{{\sqrt {\sin x} + \sqrt {\cos x} }}} \]
Now, the equation becomes as follows.
\[\begin{array}{l}2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{\sqrt {\cos x} + \sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx} \\2I = \int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {1dx} \end{array}\]
Evaluate the equation.
\[2I = \left[ x \right]_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}}\]
Apply the limit. Subtract lower limit from upper limit.
\[2I = \left[ {\dfrac{\pi }{3} - \dfrac{\pi }{6}} \right]\]
Simplify the bracket.
\[\begin{array}{l}2I = \left[ {\dfrac{{2\pi }}{6} - \dfrac{\pi }{6}} \right]\\2I = \dfrac{\pi }{6}\end{array}\]
Divide the equation by \[2\] on both sides.
\[I = \dfrac{\pi }{{12}}\]
Hence the value of \[\int_{\dfrac{\pi }{6}}^{\dfrac{\pi }{3}} {\dfrac{{dx}}{{1 + \sqrt {\tan x} }}} \]is \[\dfrac{\pi }{{12}}\].
Thus, Option (A) is correct.
Note: The common mistake made by students is taking integration of \[\sqrt {\tan x} \] and substituting limits to find value of the integration which is the wrong method of finding a solution.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

