
Find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
A. \[1/2\]
B. \[0\]
C. \[1\]
D. \[ - 1/2\]
Answer
233.1k+ views
Hint: In this question, we need to find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]. For this, we have to simplify \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \] first. After that, we will find the derivative of the result so that we will get the desired result.
Formula used: The following trigonometric identities are used to solve this question.
\[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Here, half-angle formulae play an important role while solving this question.
Also, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\] and \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Complete step-by-step solution:
Consider first \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
Let us simplify the above mathematical trigonometric expression.
But we know that \[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Thus, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{2{{\sin }^2}\left( {x/2} \right)}}{{2{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
But we know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\]
So, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {{{\tan }^2}\left( {x/2} \right)} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\left( {\tan \left( {x/2} \right)} \right)} \right]\]
But \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Hence, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Now, we will find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
But \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Thus, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\dfrac{x}{2}} \right]\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\dfrac{d}{{dx}}\left[ x \right]\]
But we know that \[\dfrac{d}{dx}\left[ x \right]=1\]
So, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\left( 1 \right)\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\]
Hence, the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] is \[1/2\]
Therefore, the correct option is (A).
Additional information: Trigonometric identities are equalities in trigonometry that are valid for any value of the occurring variables at which both halves of the equation are specified. In simple words, the trigonometric identities are equalities using trigonometric functions that remain true for any value of the variables involved, hence defining both halves of the equality. Hence, Sin, cos, and tan are the three primary trigonometric ratios whereas sec, cosec, and cot are the secondary trigonometric ratios. Also, all the trigonometric identities are associated with the right-angled triangle.
Note: Many students generally make mistakes in the simplification part of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \]. They may get wrong while writing the half angle formulae. It makes easy to find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] by taking the derivative of simplified expression of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \].
Formula used: The following trigonometric identities are used to solve this question.
\[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Here, half-angle formulae play an important role while solving this question.
Also, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\] and \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Complete step-by-step solution:
Consider first \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
Let us simplify the above mathematical trigonometric expression.
But we know that \[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Thus, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{2{{\sin }^2}\left( {x/2} \right)}}{{2{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
But we know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\]
So, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {{{\tan }^2}\left( {x/2} \right)} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\left( {\tan \left( {x/2} \right)} \right)} \right]\]
But \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Hence, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Now, we will find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
But \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Thus, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\dfrac{x}{2}} \right]\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\dfrac{d}{{dx}}\left[ x \right]\]
But we know that \[\dfrac{d}{dx}\left[ x \right]=1\]
So, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\left( 1 \right)\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\]
Hence, the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] is \[1/2\]
Therefore, the correct option is (A).
Additional information: Trigonometric identities are equalities in trigonometry that are valid for any value of the occurring variables at which both halves of the equation are specified. In simple words, the trigonometric identities are equalities using trigonometric functions that remain true for any value of the variables involved, hence defining both halves of the equality. Hence, Sin, cos, and tan are the three primary trigonometric ratios whereas sec, cosec, and cot are the secondary trigonometric ratios. Also, all the trigonometric identities are associated with the right-angled triangle.
Note: Many students generally make mistakes in the simplification part of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \]. They may get wrong while writing the half angle formulae. It makes easy to find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] by taking the derivative of simplified expression of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding How a Current Loop Acts as a Magnetic Dipole

