Answer
Verified
492.9k+ views
Hint: Directly differentiate with respect to ‘x’ and remember the formula $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$.
Complete step-by-step answer:
The given expression is,
\[y=(1+{{x}^{2}}){{\tan }^{-1}}x\]
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left[ (1+{{x}^{2}}){{\tan }^{-1}}x \right]\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\dfrac{d}{dx}\left[ (1+{{x}^{2}}) \right]\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\left[\dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}+{{\tan }^{-1}}x\left[ \dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ and derivative of a constant is always zero, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+1...........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
equation with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x+1\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x
\right)+\dfrac{d}{dx}\left( 1 \right)\]
Derivative of constant term is zero, so
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x \right)+0\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2x\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)+{{\tan }^{-1}}x\dfrac{d}{dx}(2x)\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2{{\tan }^{-1}}x+2x\cdot\dfrac{1}{1+{{x}^{2}}}\]
Taking the LCM, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2(1+{{x}^{2}}){{\tan }^{-1}}x+2x}{1+{{x}^{2}}}\]
But from the given expression we have, \[y=(1+{{x}^{2}}){{\tan }^{-1}}x\], substituting this value, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\left( y+x \right)}{1+{{x}^{2}}}\]
This is the required answer.
Note: In differentiation questions we should carefully observe the question ask for differentiation with respect to which variable, sometimes its with respect to $x$ and sometimes it is with respect to $'y'$ . As in both cases we will get different answers.
Complete step-by-step answer:
The given expression is,
\[y=(1+{{x}^{2}}){{\tan }^{-1}}x\]
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left[ (1+{{x}^{2}}){{\tan }^{-1}}x \right]\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\dfrac{d}{dx}\left[ (1+{{x}^{2}}) \right]\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\left[\dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}+{{\tan }^{-1}}x\left[ \dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]\]
Now we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ and derivative of a constant is always zero, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}\]
Cancelling the like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+1...........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
equation with respect to $'x'$, we get
$\Rightarrow$ \[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x+1\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., $\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$, applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x
\right)+\dfrac{d}{dx}\left( 1 \right)\]
Derivative of constant term is zero, so
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x \right)+0\]
We know the product rule as, \[\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\], applying this formula in the above equation, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2x\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)+{{\tan }^{-1}}x\dfrac{d}{dx}(2x)\]
Now we know the formula, $\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}$, applying this formula, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2{{\tan }^{-1}}x+2x\cdot\dfrac{1}{1+{{x}^{2}}}\]
Taking the LCM, we get
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2(1+{{x}^{2}}){{\tan }^{-1}}x+2x}{1+{{x}^{2}}}\]
But from the given expression we have, \[y=(1+{{x}^{2}}){{\tan }^{-1}}x\], substituting this value, the above equation becomes,
$\Rightarrow$ \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\left( y+x \right)}{1+{{x}^{2}}}\]
This is the required answer.
Note: In differentiation questions we should carefully observe the question ask for differentiation with respect to which variable, sometimes its with respect to $x$ and sometimes it is with respect to $'y'$ . As in both cases we will get different answers.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE