Find the value of $\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}$ where \[\dfrac{{{\text{5}}{{\text{z}}_{\text{1}}}}}{{{\text{7}}{{\text{z}}_{\text{2}}}}}\] is purely imaginary.
A) $\dfrac{5}{7}$
B) $\dfrac{7}{5}$
C) $1$
D) $\dfrac{3}{5}$
Answer
Verified
468k+ views
Hint: In this question we have found the value of the given term. For that we are going to solve the given expression by using an imaginary number. An imaginary number is a complex number that can be written as a real number multiplied by the imaginary unit ${\text{i}}$, which is defined by its property ${{\text{i}}^{\text{2}}}{\text{ = - 1}}$.
Formula used:
${{\text{i}}^0}{\text{ = 1}}$
${{\text{i}}^{\text{1}}}{\text{ = i}}$
${{\text{i}}^{\text{2}}}{\text{ = - 1}}$
Absolute value square root theorem:
For any real number $x$, $\sqrt {{x^2}} = \left| x \right|$
Complete step-by-step answer:
Here it is a given that the expression is $\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}$. We have to find the value of the given expression. They give a complex number to solve this express. So by using the number we are going to solve and find the value of the given expression.
An imaginary number ${\text{bi}}$ can be added to a real number ${\text{a}}$ to a complex number of the form ${\text{a + bi}}$.
Let \[\dfrac{{{\text{5}}{{\text{z}}_{\text{1}}}}}{{{\text{7}}{{\text{z}}_{\text{2}}}}} = {\text{iy}}\]
Here ${\text{iy}}$ is an imaginary number.
\[ \Rightarrow \dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}} = \dfrac{{{\text{7y}}}}{{\text{5}}}{\text{i}}\]
Consider the given term,
Here divide the given expression by ${{\text{z}}_{\text{2}}}$ we get,
$\left| {\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}} \right| = \left| {\dfrac{{{\text{2}}\dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}}{\text{ + 3}}}}{{{\text{2}}\dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}}{\text{ - 3}}}}} \right|$
Substitute the value for \[\dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}} = \dfrac{{{\text{7y}}}}{{\text{5}}}{\text{i}}\]
$ \Rightarrow \left| {\dfrac{{{\text{2}}\dfrac{{{\text{7yi}}}}{{\text{5}}}{\text{ + 3}}}}{{{\text{2}}\dfrac{{{\text{7yi}}}}{{\text{5}}}{\text{ - 3}}}}} \right|$
Here multiplying the terms inside elements,
$ \Rightarrow \left| {\dfrac{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ + 3}}}}{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ - 3}}}}} \right|$
By using the absolute value square root theorem mentioned in formula used, we get,
$\left| {\dfrac{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ + 3}}}}{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ - 3}}}}} \right| = \sqrt {\dfrac{{{{\left( {\dfrac{{14yi}}{5}} \right)}^2} + {{\left( 3 \right)}^2}}}{{{{\left( {\dfrac{{14yi}}{5}} \right)}^2} + {{( - 3)}^2}}}} $
Consider an imaginary number,
\[ \Rightarrow {{\text{i}}^{\text{2}}}{\text{ = i}} \times {\text{i}}\]
Substituting \[{\text{i}} = \sqrt { - 1} \] we get,
\[ \Rightarrow \sqrt { - 1} \times \sqrt { - 1} {\text{ = }}{\left( {\sqrt { - 1} } \right)^2}\]
Simplifying the terms,
\[ \Rightarrow {\left( {\sqrt { - 1} } \right)^2} = - 1\]
Hence we get ${{\text{i}}^{\text{2}}} = - 1$ and ${14^2} = 14 \times 14 = 196$, ${5^2} = 5 \times 5 = 25$, ${3^2} = 3 \times 3 = 9$using these values we get,
$ \Rightarrow \sqrt {\dfrac{{\left( { - \dfrac{{196{y^2}}}{{25}}} \right) + 9}}{{\left( { - \dfrac{{196{y^2}}}{{25}}} \right) + 9}}} $
Cancelling the similar terms we get,
$ \Rightarrow \sqrt 1 $
Hence we get,
$ \Rightarrow \left| {\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}} \right| = 1$
$\therefore $ The option C ($1$) is a correct answer.
Note: Here we are doing so many calculations using complex numbers. So we have to be careful on that calculation. Important thing is that we use absolute value-square root theorem. We have to know about the absolute value.
Absolute value: The absolute value of a number $n$, written $\left| n \right|$, can be described geometrically as the distance of $n$ from $0$ on the number line.
Formula used:
${{\text{i}}^0}{\text{ = 1}}$
${{\text{i}}^{\text{1}}}{\text{ = i}}$
${{\text{i}}^{\text{2}}}{\text{ = - 1}}$
Absolute value square root theorem:
For any real number $x$, $\sqrt {{x^2}} = \left| x \right|$
Complete step-by-step answer:
Here it is a given that the expression is $\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}$. We have to find the value of the given expression. They give a complex number to solve this express. So by using the number we are going to solve and find the value of the given expression.
An imaginary number ${\text{bi}}$ can be added to a real number ${\text{a}}$ to a complex number of the form ${\text{a + bi}}$.
Let \[\dfrac{{{\text{5}}{{\text{z}}_{\text{1}}}}}{{{\text{7}}{{\text{z}}_{\text{2}}}}} = {\text{iy}}\]
Here ${\text{iy}}$ is an imaginary number.
\[ \Rightarrow \dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}} = \dfrac{{{\text{7y}}}}{{\text{5}}}{\text{i}}\]
Consider the given term,
Here divide the given expression by ${{\text{z}}_{\text{2}}}$ we get,
$\left| {\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}} \right| = \left| {\dfrac{{{\text{2}}\dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}}{\text{ + 3}}}}{{{\text{2}}\dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}}{\text{ - 3}}}}} \right|$
Substitute the value for \[\dfrac{{{{\text{z}}_{\text{1}}}}}{{{{\text{z}}_{\text{2}}}}} = \dfrac{{{\text{7y}}}}{{\text{5}}}{\text{i}}\]
$ \Rightarrow \left| {\dfrac{{{\text{2}}\dfrac{{{\text{7yi}}}}{{\text{5}}}{\text{ + 3}}}}{{{\text{2}}\dfrac{{{\text{7yi}}}}{{\text{5}}}{\text{ - 3}}}}} \right|$
Here multiplying the terms inside elements,
$ \Rightarrow \left| {\dfrac{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ + 3}}}}{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ - 3}}}}} \right|$
By using the absolute value square root theorem mentioned in formula used, we get,
$\left| {\dfrac{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ + 3}}}}{{\dfrac{{{\text{14yi}}}}{{\text{5}}}{\text{ - 3}}}}} \right| = \sqrt {\dfrac{{{{\left( {\dfrac{{14yi}}{5}} \right)}^2} + {{\left( 3 \right)}^2}}}{{{{\left( {\dfrac{{14yi}}{5}} \right)}^2} + {{( - 3)}^2}}}} $
Consider an imaginary number,
\[ \Rightarrow {{\text{i}}^{\text{2}}}{\text{ = i}} \times {\text{i}}\]
Substituting \[{\text{i}} = \sqrt { - 1} \] we get,
\[ \Rightarrow \sqrt { - 1} \times \sqrt { - 1} {\text{ = }}{\left( {\sqrt { - 1} } \right)^2}\]
Simplifying the terms,
\[ \Rightarrow {\left( {\sqrt { - 1} } \right)^2} = - 1\]
Hence we get ${{\text{i}}^{\text{2}}} = - 1$ and ${14^2} = 14 \times 14 = 196$, ${5^2} = 5 \times 5 = 25$, ${3^2} = 3 \times 3 = 9$using these values we get,
$ \Rightarrow \sqrt {\dfrac{{\left( { - \dfrac{{196{y^2}}}{{25}}} \right) + 9}}{{\left( { - \dfrac{{196{y^2}}}{{25}}} \right) + 9}}} $
Cancelling the similar terms we get,
$ \Rightarrow \sqrt 1 $
Hence we get,
$ \Rightarrow \left| {\dfrac{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ + 3}}{{\text{z}}_{\text{2}}}}}{{{\text{2}}{{\text{z}}_{\text{1}}}{\text{ - 3}}{{\text{z}}_{\text{2}}}}}} \right| = 1$
$\therefore $ The option C ($1$) is a correct answer.
Note: Here we are doing so many calculations using complex numbers. So we have to be careful on that calculation. Important thing is that we use absolute value-square root theorem. We have to know about the absolute value.
Absolute value: The absolute value of a number $n$, written $\left| n \right|$, can be described geometrically as the distance of $n$ from $0$ on the number line.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE