
Find the value of \[\det \left( {{A}_{0}}+A_{0}^{2}B_{0}^{2}+A_{0}^{3}+A_{0}^{4}B_{0}^{4}+.......10\text{ terms} \right)\] if the two matrices ${{A}_{0}}$ and ${{B}_{0}}$ are $\left[ \begin{matrix}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3 \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3 \\
\end{matrix} \right]$ respectively.
\[\begin{align}
& A.1000 \\
& B.-800 \\
& C.0 \\
& D.-8000 \\
\end{align}\]
Answer
232.8k+ views
Hint: Students should first find the determinant values using formula, if $X=\left[ \begin{matrix}
a & d & g \\
b & e & h \\
c & f & i \\
\end{matrix} \right]$ then its determinant value or det (X) is $a\left( ei-fh \right)-d\left( bi-ch \right)+g\left( bf-ce \right)$ and then use properties such as,
\[\begin{align}
& \det \left( A+B \right)=\det \left( A \right)+\det \left( B \right) \\
& \det \left( AB \right)=\det \left( A \right)\times \det \left( B \right) \\
& \det \left( {{A}^{4}} \right)={{\left( \det \left( A \right) \right)}^{4}} \\
\end{align}\]
To get the desired answer.
Complete step-by-step solution:
In the above question, we are given two matrices ${{A}_{0}}$ and ${{B}_{0}}$ which are $\left[ \begin{matrix}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3 \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3 \\
\end{matrix} \right]$ and from this we have to find the value of \[\det \left( {{A}_{0}}+A_{0}^{2}B_{0}^{2}+A_{0}^{3}+A_{0}^{4}B_{0}^{4}+.......10\text{ terms} \right)\]
So, as we know that,
\[\begin{align}
& \det \left( A+B \right)=\det \left( A \right)+\det \left( B \right) \\
& \det \left( AB \right)=\det \left( A \right)\times \det \left( B \right) \\
& \det \left( {{A}^{4}} \right)={{\left( \det \left( A \right) \right)}^{4}} \\
\end{align}\]
We can rewrite the given statement \[\det \left( {{A}_{0}}+A_{0}^{2}B_{0}^{2}+A_{0}^{3}+A_{0}^{4}B_{0}^{4}+.......10\text{ terms} \right)\] as \[\det \left( {{A}_{0}} \right)+\det \left( A_{0}^{2} \right)\times \det \left( B_{0}^{2} \right)+\det \left( A_{0}^{3} \right).......10\text{ terms}\], which can be further written as,
\[\det \left( {{A}_{0}} \right)+{{\left( \det \left( {{A}_{0}} \right) \right)}^{2}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{2}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{3}}+.......10\text{ terms}\]
Now, as we know that,
\[{{A}_{0}}=\left[ \begin{matrix}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3 \\
\end{matrix} \right]\]
Then we will find the determinant using formula. Let us consider a matrix of the form
$X=\left[ \begin{matrix}
a & d & g \\
b & e & h \\
c & f & i \\
\end{matrix} \right]$
Then, we know that the determinant of this matrix can be written as \[\det \left( X \right)=a\left( ei-fh \right)-d\left( bi-ch \right)+g\left( bf-ce \right)\]
Now, we will apply this for our matrix. So we get the determinant of the matrix, $\det \left( {{A}_{0}} \right)$ as \[\Rightarrow \left\{ 2\left( -9+8 \right)+2\left( 3-4 \right)-4\left( 2-3 \right) \right\}\Rightarrow \left( -2-2+4 \right)\Rightarrow 0\]
Now, in a similar manner, we will find the determinant of matrix B.
For, the matrix \[{{B}_{0}}=\left[ \begin{matrix}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3 \\
\end{matrix} \right]\] again using the above formula we can get its determinant $\det \left( {{B}_{0}} \right)$ as
\[\Rightarrow \left\{ -4\left( 0-4 \right)+3\left( 3-4 \right)+\left( -3 \right)\left( 4-0 \right) \right\}\Rightarrow \left( 16-3-12 \right)\Rightarrow 1\]
Thus, from the above calculations, we have got \[\det \left( {{A}_{0}} \right)=0\text{ and }\det \left( {{B}_{0}} \right)=1\]
Now, we can evaluate the value of the given expression in the question. So, we have the value of the given expression as,
\[\begin{align}
& \det \left( {{A}_{0}} \right)+{{\left( \det \left( {{A}_{0}} \right) \right)}^{2}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{2}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{3}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{4}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{4}}+ \\
& {{\left( \det \left( {{A}_{0}} \right) \right)}^{5}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{5}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{6}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{6}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{7}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{7}}+ \\
& {{\left( \det \left( {{A}_{0}} \right) \right)}^{8}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{8}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{9}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{9}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{10}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{10}} \\
\end{align}\]
Now on substituting $\det \left( {{A}_{0}} \right)=0\text{ and }\det \left( {{B}_{0}} \right)=1$ in the above expression, we get:
\[\begin{align}
& 0+{{\left( 0 \right)}^{2}}\times {{\left( 1 \right)}^{2}}+{{\left( 0 \right)}^{3}}+{{\left( 0 \right)}^{4}}\times {{\left( 1 \right)}^{4}}+{{\left( 0 \right)}^{5}}\times {{\left( 1 \right)}^{5}}+{{\left( 0 \right)}^{6}}\times {{\left( 1 \right)}^{6}}+ \\
& {{\left( 0 \right)}^{7}}\times {{\left( 1 \right)}^{7}}+{{\left( 0 \right)}^{8}}\times {{\left( 1 \right)}^{8}}+{{\left( 0 \right)}^{9}}\times {{\left( 1 \right)}^{9}}+{{\left( 0 \right)}^{10}}\times {{\left( 1 \right)}^{10}} \\
\end{align}\]
Thus, on simplification of all the above terms, we get:
\[0+0+0+0+0+0+0+0+0+0\Rightarrow 0\]
Thus the correct option is C.
Note: Students while finding determinant values, generally do calculation mistakes which can make their answer wrong. Thus, they should be careful about that. Students must note that in the given expression whose value is to be found, we have to find the determinant of matrix A and B and then take the square, cube, or higher powers. They might by mistake find the square of the matrix by multiplying it and then take its determinant. So, this must be avoided.
a & d & g \\
b & e & h \\
c & f & i \\
\end{matrix} \right]$ then its determinant value or det (X) is $a\left( ei-fh \right)-d\left( bi-ch \right)+g\left( bf-ce \right)$ and then use properties such as,
\[\begin{align}
& \det \left( A+B \right)=\det \left( A \right)+\det \left( B \right) \\
& \det \left( AB \right)=\det \left( A \right)\times \det \left( B \right) \\
& \det \left( {{A}^{4}} \right)={{\left( \det \left( A \right) \right)}^{4}} \\
\end{align}\]
To get the desired answer.
Complete step-by-step solution:
In the above question, we are given two matrices ${{A}_{0}}$ and ${{B}_{0}}$ which are $\left[ \begin{matrix}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3 \\
\end{matrix} \right]$ and $\left[ \begin{matrix}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3 \\
\end{matrix} \right]$ and from this we have to find the value of \[\det \left( {{A}_{0}}+A_{0}^{2}B_{0}^{2}+A_{0}^{3}+A_{0}^{4}B_{0}^{4}+.......10\text{ terms} \right)\]
So, as we know that,
\[\begin{align}
& \det \left( A+B \right)=\det \left( A \right)+\det \left( B \right) \\
& \det \left( AB \right)=\det \left( A \right)\times \det \left( B \right) \\
& \det \left( {{A}^{4}} \right)={{\left( \det \left( A \right) \right)}^{4}} \\
\end{align}\]
We can rewrite the given statement \[\det \left( {{A}_{0}}+A_{0}^{2}B_{0}^{2}+A_{0}^{3}+A_{0}^{4}B_{0}^{4}+.......10\text{ terms} \right)\] as \[\det \left( {{A}_{0}} \right)+\det \left( A_{0}^{2} \right)\times \det \left( B_{0}^{2} \right)+\det \left( A_{0}^{3} \right).......10\text{ terms}\], which can be further written as,
\[\det \left( {{A}_{0}} \right)+{{\left( \det \left( {{A}_{0}} \right) \right)}^{2}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{2}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{3}}+.......10\text{ terms}\]
Now, as we know that,
\[{{A}_{0}}=\left[ \begin{matrix}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3 \\
\end{matrix} \right]\]
Then we will find the determinant using formula. Let us consider a matrix of the form
$X=\left[ \begin{matrix}
a & d & g \\
b & e & h \\
c & f & i \\
\end{matrix} \right]$
Then, we know that the determinant of this matrix can be written as \[\det \left( X \right)=a\left( ei-fh \right)-d\left( bi-ch \right)+g\left( bf-ce \right)\]
Now, we will apply this for our matrix. So we get the determinant of the matrix, $\det \left( {{A}_{0}} \right)$ as \[\Rightarrow \left\{ 2\left( -9+8 \right)+2\left( 3-4 \right)-4\left( 2-3 \right) \right\}\Rightarrow \left( -2-2+4 \right)\Rightarrow 0\]
Now, in a similar manner, we will find the determinant of matrix B.
For, the matrix \[{{B}_{0}}=\left[ \begin{matrix}
-4 & -3 & -3 \\
1 & 0 & 1 \\
4 & 4 & 3 \\
\end{matrix} \right]\] again using the above formula we can get its determinant $\det \left( {{B}_{0}} \right)$ as
\[\Rightarrow \left\{ -4\left( 0-4 \right)+3\left( 3-4 \right)+\left( -3 \right)\left( 4-0 \right) \right\}\Rightarrow \left( 16-3-12 \right)\Rightarrow 1\]
Thus, from the above calculations, we have got \[\det \left( {{A}_{0}} \right)=0\text{ and }\det \left( {{B}_{0}} \right)=1\]
Now, we can evaluate the value of the given expression in the question. So, we have the value of the given expression as,
\[\begin{align}
& \det \left( {{A}_{0}} \right)+{{\left( \det \left( {{A}_{0}} \right) \right)}^{2}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{2}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{3}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{4}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{4}}+ \\
& {{\left( \det \left( {{A}_{0}} \right) \right)}^{5}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{5}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{6}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{6}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{7}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{7}}+ \\
& {{\left( \det \left( {{A}_{0}} \right) \right)}^{8}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{8}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{9}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{9}}+{{\left( \det \left( {{A}_{0}} \right) \right)}^{10}}\times {{\left( \det \left( {{B}_{0}} \right) \right)}^{10}} \\
\end{align}\]
Now on substituting $\det \left( {{A}_{0}} \right)=0\text{ and }\det \left( {{B}_{0}} \right)=1$ in the above expression, we get:
\[\begin{align}
& 0+{{\left( 0 \right)}^{2}}\times {{\left( 1 \right)}^{2}}+{{\left( 0 \right)}^{3}}+{{\left( 0 \right)}^{4}}\times {{\left( 1 \right)}^{4}}+{{\left( 0 \right)}^{5}}\times {{\left( 1 \right)}^{5}}+{{\left( 0 \right)}^{6}}\times {{\left( 1 \right)}^{6}}+ \\
& {{\left( 0 \right)}^{7}}\times {{\left( 1 \right)}^{7}}+{{\left( 0 \right)}^{8}}\times {{\left( 1 \right)}^{8}}+{{\left( 0 \right)}^{9}}\times {{\left( 1 \right)}^{9}}+{{\left( 0 \right)}^{10}}\times {{\left( 1 \right)}^{10}} \\
\end{align}\]
Thus, on simplification of all the above terms, we get:
\[0+0+0+0+0+0+0+0+0+0\Rightarrow 0\]
Thus the correct option is C.
Note: Students while finding determinant values, generally do calculation mistakes which can make their answer wrong. Thus, they should be careful about that. Students must note that in the given expression whose value is to be found, we have to find the determinant of matrix A and B and then take the square, cube, or higher powers. They might by mistake find the square of the matrix by multiplying it and then take its determinant. So, this must be avoided.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

