
How do I find the value of \[\cot \left( {\dfrac{\pi }{{12}}} \right)\]?
Answer
467.7k+ views
Hint: Trigonometric functions are those functions that tell us the relation between the three sides of a right-angled triangle. Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively. Thus the given function can be converted in the form of tangent easily. First we find the value of tangent function then taking the reciprocal of tangent we get the cotangent value. Also we need to know the supplementary angle of sine.
Complete step-by-step solution:
Given, \[\cot \left( {\dfrac{\pi }{{12}}} \right)\].
We know that the
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\].
Now we find the value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\].
We can express \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
Then we have
\[
\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\]
We know the difference formula for tangent that is \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Here \[A = \dfrac{\pi }{3}\]and\[B = \dfrac{\pi }{4}\].
\[ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
We know \[\tan \dfrac{\pi }{3} = \sqrt 3 \] and \[\tan \dfrac{\pi }{4} = 1\]. Substituting we have,
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
To simplify further we rationalize this
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}\]
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}\]
Denominator is of the form \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
Square and square root will cancel out,
\[ \Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}\]
\[ \Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}\]
Taking 2 common we have,
\[ \Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}\]
\[ \Rightarrow - \left( {\sqrt 3 - 2} \right)\]
\[ \Rightarrow 2 - \sqrt 3 \]
Thus we have \[\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \].
Now we have,
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\]
\[ \Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}\].
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Complete step-by-step solution:
Given, \[\cot \left( {\dfrac{\pi }{{12}}} \right)\].
We know that the
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\].
Now we find the value of \[\tan \left( {\dfrac{\pi }{{12}}} \right)\].
We can express \[\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}\]
Then we have
\[
\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) \\
\]
We know the difference formula for tangent that is \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]. Here \[A = \dfrac{\pi }{3}\]and\[B = \dfrac{\pi }{4}\].
\[ \Rightarrow \tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\tan \dfrac{\pi }{3} - \tan \dfrac{\pi }{4}}}{{1 + \tan \dfrac{\pi }{3}.\tan \dfrac{\pi }{4}}}\]
We know \[\tan \dfrac{\pi }{3} = \sqrt 3 \] and \[\tan \dfrac{\pi }{4} = 1\]. Substituting we have,
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 .1}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}\]
To simplify further we rationalize this
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \times \dfrac{{1 - \sqrt 3 }}{{1 - \sqrt 3 }}\]
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}\]
Denominator is of the form \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow \dfrac{{\sqrt 3 \left( {1 - \sqrt 3 } \right) - 1\left( {1 - \sqrt 3 } \right)}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - {{\left( {\sqrt 3 } \right)}^2} - 1 + \sqrt 3 }}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}\]
Square and square root will cancel out,
\[ \Rightarrow \dfrac{{\sqrt 3 - 3 - 1 + \sqrt 3 }}{{\left( {1 - 3} \right)}}\]
\[ \Rightarrow \dfrac{{2\sqrt 3 - 4}}{{ - 2}}\]
Taking 2 common we have,
\[ \Rightarrow \dfrac{{2\left( {\sqrt 3 - 2} \right)}}{{ - 2}}\]
\[ \Rightarrow - \left( {\sqrt 3 - 2} \right)\]
\[ \Rightarrow 2 - \sqrt 3 \]
Thus we have \[\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \].
Now we have,
\[\cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{\tan \left( {\dfrac{\pi }{{12}}} \right)}}\]
\[ \Rightarrow \cot \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{{2 - \sqrt 3 }}\].
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
