
Find the value of $\cos \theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right] = $
A $\left[ {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right]$
B $\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&0
\end{array}} \right]$
C $\left[ {\begin{array}{*{20}{c}}
0&1 \\
1&0
\end{array}} \right]$
D $\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Answer
233.1k+ views
Hint:First we will simplify the matrices then add the matrices. Then we will use the trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$ to solve the question and get the required solution.
Formula Used: ${\cos ^2}\theta + {\sin ^2}\theta = 1$
Complete step by step Solution:
$\cos \theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
We know that $a\left[ {\begin{array}{*{20}{c}}
x&y \\
z&u
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ax}&{ay} \\
{az}&{au}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ - \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
After adding, the matrices we will get
$ = \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta + {{\cos }^2}\theta }&{\sin \theta \cos \theta - \sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta + \sin \theta \cos \theta }&{{{\cos }^2}\theta + {{\sin }^2}\theta }
\end{array}} \right]$
We know the identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$
$ = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Therefore, the correct option is (D).
Note:Students should do the calculations carefully to avoid any mistakes. And use the correct identities to solve the calculations correctly. And also keep in mind that ${\cos ^2}\theta + {\sin ^2}\theta = 1$.
Formula Used: ${\cos ^2}\theta + {\sin ^2}\theta = 1$
Complete step by step Solution:
$\cos \theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
We know that $a\left[ {\begin{array}{*{20}{c}}
x&y \\
z&u
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ax}&{ay} \\
{az}&{au}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ - \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
After adding, the matrices we will get
$ = \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta + {{\cos }^2}\theta }&{\sin \theta \cos \theta - \sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta + \sin \theta \cos \theta }&{{{\cos }^2}\theta + {{\sin }^2}\theta }
\end{array}} \right]$
We know the identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$
$ = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
Therefore, the correct option is (D).
Note:Students should do the calculations carefully to avoid any mistakes. And use the correct identities to solve the calculations correctly. And also keep in mind that ${\cos ^2}\theta + {\sin ^2}\theta = 1$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

