# Find the value of ${\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right)$

Last updated date: 21st Mar 2023

•

Total views: 309k

•

Views today: 8.88k

Answer

Verified

309k+ views

Hint: - Use the identity ${a^x} = \tan \theta $

Given equation is

$

{\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right) \\

= {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{{a^x}}} - {a^x}}}{{\dfrac{1}{{{a^x}}} + {a^x}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) \\

$

Let ${a^x} = \tan \theta ............\left( 1 \right)$

$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\tan \theta } \right)}^2}}}{{1 + {{\left( {tan\theta } \right)}^2}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$

Now, as we know $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $

$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) = 2\theta $

But as we know ${\cos ^{ - 1}}x$ will always lie between $\left( {0,\pi } \right)$

$

0 \leqslant {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \leqslant \pi \\

\Rightarrow 0 \leqslant 2\theta \leqslant \pi \\

\Rightarrow 0 \leqslant \theta \leqslant \dfrac{\pi }{2}...........\left( 2 \right) \\

$

Now from equation 1

$

{a^x} = \tan \theta \\

\Rightarrow \theta = {\tan ^{ - 1}}\left( {{a^x}} \right) \\

$

From equation 2

$

\Rightarrow 0 \leqslant {\tan ^{ - 1}}\left( {{a^x}} \right) \leqslant \dfrac{\pi }{2} \\

\Rightarrow \tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\

$

As we know the value of $\tan 0 = 0$ and $\tan \dfrac{\pi }{2} = \infty $

Therefore from above equation

$

\tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\

= 0 \leqslant {a^x} \leqslant \infty \\

$

So, this is the required solution.

Note: -In such types of questions first substitute ${a^x} = \tan \theta $, then simplify using some basic trigonometric properties which is stated above, then always remember the domain of ${\cos ^{ - 1}}x$, then again simplify we will get the required answer.

Given equation is

$

{\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right) \\

= {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{{a^x}}} - {a^x}}}{{\dfrac{1}{{{a^x}}} + {a^x}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) \\

$

Let ${a^x} = \tan \theta ............\left( 1 \right)$

$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\tan \theta } \right)}^2}}}{{1 + {{\left( {tan\theta } \right)}^2}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)$

Now, as we know $\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta $

$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) = 2\theta $

But as we know ${\cos ^{ - 1}}x$ will always lie between $\left( {0,\pi } \right)$

$

0 \leqslant {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \leqslant \pi \\

\Rightarrow 0 \leqslant 2\theta \leqslant \pi \\

\Rightarrow 0 \leqslant \theta \leqslant \dfrac{\pi }{2}...........\left( 2 \right) \\

$

Now from equation 1

$

{a^x} = \tan \theta \\

\Rightarrow \theta = {\tan ^{ - 1}}\left( {{a^x}} \right) \\

$

From equation 2

$

\Rightarrow 0 \leqslant {\tan ^{ - 1}}\left( {{a^x}} \right) \leqslant \dfrac{\pi }{2} \\

\Rightarrow \tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\

$

As we know the value of $\tan 0 = 0$ and $\tan \dfrac{\pi }{2} = \infty $

Therefore from above equation

$

\tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\

= 0 \leqslant {a^x} \leqslant \infty \\

$

So, this is the required solution.

Note: -In such types of questions first substitute ${a^x} = \tan \theta $, then simplify using some basic trigonometric properties which is stated above, then always remember the domain of ${\cos ^{ - 1}}x$, then again simplify we will get the required answer.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?