Find the value of \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]?
Answer
281.7k+ views
Hint: Equate the trigonometric function to a variable. And then find the ranges of the \[\cos \] functions and solve for them. Find the value that satisfies the condition. Substitute the angle of \[\pi \] and evaluate it.
Complete step-by-step solution:
Let us learn about inverse trigonometric functions. Inverse trigonometric functions are also known as anti trigonometric functions, arcus functions, and cyclometric functions. These inverse trigonometric functions formulas enable us to find out any angles with any of the trigonometry ratios. The inverse trigonometric function does exactly function the opposite way of the normal trigonometric functions. The -1 in the exponent of the trigonometric is not the exponent but it is the symbol for inverse function. The range of \[{{\cos }^{-1}}\] function is \[\left( 0,\pi \right)\].
Now let us find the value of the given trigonometric function \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
Let \[y={{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
\[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}={{390}^{\circ }}\]
Multiply with \[\cos \] on both sides, we get
\[\Rightarrow \cos y=\cos \dfrac{13\pi }{6}\]
On substituting the value of \[\dfrac{\pi }{6}\], we get, i.e. \[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}=13\times 30={{390}^{\circ }}\]
\[\Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right)\]
As we know that the range of principal values of \[\cos \] is \[\left(0, \pi \right)\].
\[\therefore y={{390}^{\circ }}\] is not possible.
Now,
\[\begin{align}
& \Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos {{30}^{\circ }} \\
& \Rightarrow \cos y=\cos \left( {{30}^{\circ }}\times \frac{\pi }{180} \right) \\
& \Rightarrow \cos y=\cos \left( \frac{\pi }{6} \right) \\
& \therefore y=\frac{\pi }{6} \\
\end{align}\]
This is in the range of principle values of \[{{\cos }^{-1}}\] is \[\left( 0,\pi \right)\].
\[\therefore \] \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]=\[y=\dfrac{\pi }{6}\].
The graph of the given function is
Note: Here is the list of properties of inverse trigonometric functions.
\[\begin{align}
& \sin \left( {{\sin }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \cos \left( {{\cos }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \tan \left( {{\tan }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \infty \\
& \cot \left( {{\cot }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \le \text{ }x\text{ }\le \infty \\
& \sec \left( {{\sec }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
& \csc \left( {{\csc }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
\end{align}\]
The inverse trigonometric relations are not functions because for any given input there exists more than one output. That is, for a given number there exists more than one angle whose sine, cosine, etc., is that number.
Complete step-by-step solution:
Let us learn about inverse trigonometric functions. Inverse trigonometric functions are also known as anti trigonometric functions, arcus functions, and cyclometric functions. These inverse trigonometric functions formulas enable us to find out any angles with any of the trigonometry ratios. The inverse trigonometric function does exactly function the opposite way of the normal trigonometric functions. The -1 in the exponent of the trigonometric is not the exponent but it is the symbol for inverse function. The range of \[{{\cos }^{-1}}\] function is \[\left( 0,\pi \right)\].
Now let us find the value of the given trigonometric function \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
Let \[y={{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]
\[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}={{390}^{\circ }}\]
Multiply with \[\cos \] on both sides, we get
\[\Rightarrow \cos y=\cos \dfrac{13\pi }{6}\]
On substituting the value of \[\dfrac{\pi }{6}\], we get, i.e. \[\dfrac{13\pi }{6}=\dfrac{13\times 180}{6}=13\times 30={{390}^{\circ }}\]
\[\Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right)\]
As we know that the range of principal values of \[\cos \] is \[\left(0, \pi \right)\].
\[\therefore y={{390}^{\circ }}\] is not possible.
Now,
\[\begin{align}
& \Rightarrow \cos y=\cos \left( {{390}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos \left( {{360}^{\circ }}+{{30}^{\circ }} \right) \\
& \Rightarrow \cos y=\cos {{30}^{\circ }} \\
& \Rightarrow \cos y=\cos \left( {{30}^{\circ }}\times \frac{\pi }{180} \right) \\
& \Rightarrow \cos y=\cos \left( \frac{\pi }{6} \right) \\
& \therefore y=\frac{\pi }{6} \\
\end{align}\]
This is in the range of principle values of \[{{\cos }^{-1}}\] is \[\left( 0,\pi \right)\].
\[\therefore \] \[{{\cos }^{-1}}\left( \cos \dfrac{13\pi }{6} \right)\]=\[y=\dfrac{\pi }{6}\].
The graph of the given function is

Note: Here is the list of properties of inverse trigonometric functions.
\[\begin{align}
& \sin \left( {{\sin }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \cos \left( {{\cos }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-1\text{ }\le \text{ }x\text{ }\le \text{ }1 \\
& \tan \left( {{\tan }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \infty \\
& \cot \left( {{\cot }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \le \text{ }x\text{ }\le \infty \\
& \sec \left( {{\sec }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
& \csc \left( {{\csc }^{-}}^{1}x \right)\text{ }=\text{ }x,\text{ }if\text{ }-\infty \text{ }\le \text{ }x\text{ }\le \text{ }-1\text{ }or\text{ }1\text{ }\le \text{ }x\text{ }\le \text{ }\infty \\
\end{align}\]
The inverse trigonometric relations are not functions because for any given input there exists more than one output. That is, for a given number there exists more than one angle whose sine, cosine, etc., is that number.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
