# Find the value of a and b such that$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\ \tan (x+\ a)\ +\ b$.

Last updated date: 17th Mar 2023

•

Total views: 308.1k

•

Views today: 2.88k

Answer

Verified

308.1k+ views

Hint: $\dfrac{1}{1+\sin x}$cannot be integrated directly so convert the function such that we can integrate it. Rationalize the given function $\dfrac{1}{1+\sin x}$ before integrating it.

Consider the expression,

$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b$…(1.1)

Now,

$\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b$

Multiply $(1-\sin x)$ with both numerator and denominator in L.H.S., we get

$\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b$

We know ${{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b)$ so in denominator, we use this formula and we

get

$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b$

We know${{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ $, so the above equation becomes

$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b$

Separating the denominator, we get

\[\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b\]

We know that $\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x$ , $\dfrac{\sin x}{\cos x}\ =\ \tan x$ and

$\dfrac{\ 1}{\cos x}\ =\ \sec x$, so the above equation becomes

$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b$

$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b$

We know, $\int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }$and$\int{\tan x\ \sec xdx\ =\ \sec x}$, so above

equation becomes

$\Rightarrow \tan x-\sec x+C=\tan (x+a)+b$

Hence, comparing both side we get the value of a & b, so

\[a=0\]; \[b=-\sec x+C\]

Note: In expression$\int{\dfrac{dx}{1\ +\ \sin x}}\ \ $, it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.

Consider the expression,

$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b$…(1.1)

Now,

$\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b$

Multiply $(1-\sin x)$ with both numerator and denominator in L.H.S., we get

$\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b$

We know ${{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b)$ so in denominator, we use this formula and we

get

$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b$

We know${{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ $, so the above equation becomes

$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b$

Separating the denominator, we get

\[\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b\]

We know that $\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x$ , $\dfrac{\sin x}{\cos x}\ =\ \tan x$ and

$\dfrac{\ 1}{\cos x}\ =\ \sec x$, so the above equation becomes

$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b$

$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b$

We know, $\int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }$and$\int{\tan x\ \sec xdx\ =\ \sec x}$, so above

equation becomes

$\Rightarrow \tan x-\sec x+C=\tan (x+a)+b$

Hence, comparing both side we get the value of a & b, so

\[a=0\]; \[b=-\sec x+C\]

Note: In expression$\int{\dfrac{dx}{1\ +\ \sin x}}\ \ $, it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?