
Find the value of a and b such that$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\ \tan (x+\ a)\ +\ b$.
Answer
616.5k+ views
Hint: $\dfrac{1}{1+\sin x}$cannot be integrated directly so convert the function such that we can integrate it. Rationalize the given function $\dfrac{1}{1+\sin x}$ before integrating it.
Consider the expression,
$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b$…(1.1)
Now,
$\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b$
Multiply $(1-\sin x)$ with both numerator and denominator in L.H.S., we get
$\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b$
We know ${{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b)$ so in denominator, we use this formula and we
get
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b$
We know${{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ $, so the above equation becomes
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b$
Separating the denominator, we get
\[\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b\]
We know that $\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x$ , $\dfrac{\sin x}{\cos x}\ =\ \tan x$ and
$\dfrac{\ 1}{\cos x}\ =\ \sec x$, so the above equation becomes
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b$
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b$
We know, $\int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }$and$\int{\tan x\ \sec xdx\ =\ \sec x}$, so above
equation becomes
$\Rightarrow \tan x-\sec x+C=\tan (x+a)+b$
Hence, comparing both side we get the value of a & b, so
\[a=0\]; \[b=-\sec x+C\]
Note: In expression$\int{\dfrac{dx}{1\ +\ \sin x}}\ \ $, it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.
Consider the expression,
$\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b$…(1.1)
Now,
$\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b$
Multiply $(1-\sin x)$ with both numerator and denominator in L.H.S., we get
$\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b$
We know ${{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b)$ so in denominator, we use this formula and we
get
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b$
We know${{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ $, so the above equation becomes
$\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b$
Separating the denominator, we get
\[\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b\]
We know that $\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x$ , $\dfrac{\sin x}{\cos x}\ =\ \tan x$ and
$\dfrac{\ 1}{\cos x}\ =\ \sec x$, so the above equation becomes
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b$
$\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b$
We know, $\int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }$and$\int{\tan x\ \sec xdx\ =\ \sec x}$, so above
equation becomes
$\Rightarrow \tan x-\sec x+C=\tan (x+a)+b$
Hence, comparing both side we get the value of a & b, so
\[a=0\]; \[b=-\sec x+C\]
Note: In expression$\int{\dfrac{dx}{1\ +\ \sin x}}\ \ $, it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

