
Find the square root of $ - 8 + 6i$ ?
$
{\text{A}}{\text{.}} \pm {\text{(1 + 3i)}} \\
{\text{B}}{\text{.}} \pm {\text{(1 - 3i)}} \\
{\text{C}}{\text{.}} \pm {\text{(3 + i)}} \\
{\text{D}}{\text{.}} \pm {\text{(3 - i)}} \\
$
Answer
549.3k+ views
Hint: In this type of question, where we have to find the square root of a complex number, the standard way is to assume that the square root of the given complex number is a new complex number which is x+iy and then square both sides. Solve the equation formed to get the value of the square root of the given complex number.
Complete step-by-step answer:
In the question, it is given a complex number -8+6i.
Because the number given is a complex number, so, we cannot directly find the value of the square root.
Let us first assume that the square root of a given complex number is x+iy.
$\therefore $ According to question, we can write:
$\sqrt { - 8 + 6i} = ({\text{x + iy)}}$ .
On squaring both side, we get:
$ - 8 + 6i = {({\text{x + iy)}}^2}$ .
On solving the above equation, we get:
$ - 8 + 6i = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2} + 2i{\text{xy}}$ .
Now, equating the real and imaginary part on both side, we get:
$ - 8 = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2}$ ------ (1)
And
$
2{\text{xy = 6}} \\
\Rightarrow {\text{xy = }}\dfrac{6}{2} = 3 \\
$ ----------------- (2)
We know that ${({\text{a + b)}}^2} = {\left( {{\text{a - b}}} \right)^2} + 4{\text{ab}}$ .
Therefore, we can write:
${({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {({{\text{x}}^2}{\text{ - }}{{\text{y}}^2})^2} + 4{\left( {{\text{xy}}} \right)^2}$ .
Putting the values from Equation 1 and 2, we get:
$
{({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {( - 8)^2} + 4{\left( 3 \right)^2} = 64 + 36 = 100 \\
\Rightarrow ({{\text{x}}^2} + {{\text{y}}^2}) = \pm \sqrt {100} = \pm 10 \\
$
$\because $ x and y are real numbers. So, the sum of squares of x and y can never be negative.
So, the only solution is:
$({{\text{x}}^2} + {{\text{y}}^2}) = 10$ -----------(3)
On adding equation 1 and 3, we get:
$
2{{\text{x}}^2} = 2 \\
\Rightarrow {{\text{x}}^2} = \dfrac{2}{2} = 1 \\
\Rightarrow {\text{x}} = \pm \sqrt 1 = \pm 1 \\
$
Putting the value of x in equation 3, we get:
$
{1^2} + {{\text{y}}^2} = 10 \\
\Rightarrow {{\text{y}}^2} = 10 - 1 = 9 \\
\Rightarrow {\text{y = }} \pm \sqrt 9 = \pm 3. \\
$
But, from equation 2:
${\text{xy = 3}}$ .
Since the product of x and y is positive. So, x and y can be either both positive or can both be negative.
Therefore, the square root of $ - 8 + 6i = \pm (1 + 3i)$ i.e. (1+3i) and (-1-3i).
So, option A is correct.
Note: In this type of question the first step is to assume the square root of a given complex number as an unknown complex number and then square both sides to get an equation in x and y .After this use the algebraic identities to find the value of unknown parameter x and y. One point to be noted is that not all the value of x and y will give the required complex number. We have to take only those values which satisfy the remaining equation which in this case is xy=3.
Complete step-by-step answer:
In the question, it is given a complex number -8+6i.
Because the number given is a complex number, so, we cannot directly find the value of the square root.
Let us first assume that the square root of a given complex number is x+iy.
$\therefore $ According to question, we can write:
$\sqrt { - 8 + 6i} = ({\text{x + iy)}}$ .
On squaring both side, we get:
$ - 8 + 6i = {({\text{x + iy)}}^2}$ .
On solving the above equation, we get:
$ - 8 + 6i = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2} + 2i{\text{xy}}$ .
Now, equating the real and imaginary part on both side, we get:
$ - 8 = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2}$ ------ (1)
And
$
2{\text{xy = 6}} \\
\Rightarrow {\text{xy = }}\dfrac{6}{2} = 3 \\
$ ----------------- (2)
We know that ${({\text{a + b)}}^2} = {\left( {{\text{a - b}}} \right)^2} + 4{\text{ab}}$ .
Therefore, we can write:
${({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {({{\text{x}}^2}{\text{ - }}{{\text{y}}^2})^2} + 4{\left( {{\text{xy}}} \right)^2}$ .
Putting the values from Equation 1 and 2, we get:
$
{({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {( - 8)^2} + 4{\left( 3 \right)^2} = 64 + 36 = 100 \\
\Rightarrow ({{\text{x}}^2} + {{\text{y}}^2}) = \pm \sqrt {100} = \pm 10 \\
$
$\because $ x and y are real numbers. So, the sum of squares of x and y can never be negative.
So, the only solution is:
$({{\text{x}}^2} + {{\text{y}}^2}) = 10$ -----------(3)
On adding equation 1 and 3, we get:
$
2{{\text{x}}^2} = 2 \\
\Rightarrow {{\text{x}}^2} = \dfrac{2}{2} = 1 \\
\Rightarrow {\text{x}} = \pm \sqrt 1 = \pm 1 \\
$
Putting the value of x in equation 3, we get:
$
{1^2} + {{\text{y}}^2} = 10 \\
\Rightarrow {{\text{y}}^2} = 10 - 1 = 9 \\
\Rightarrow {\text{y = }} \pm \sqrt 9 = \pm 3. \\
$
But, from equation 2:
${\text{xy = 3}}$ .
Since the product of x and y is positive. So, x and y can be either both positive or can both be negative.
Therefore, the square root of $ - 8 + 6i = \pm (1 + 3i)$ i.e. (1+3i) and (-1-3i).
So, option A is correct.
Note: In this type of question the first step is to assume the square root of a given complex number as an unknown complex number and then square both sides to get an equation in x and y .After this use the algebraic identities to find the value of unknown parameter x and y. One point to be noted is that not all the value of x and y will give the required complex number. We have to take only those values which satisfy the remaining equation which in this case is xy=3.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
