Find the square root of $ - 8 + 6i$ ?
$
{\text{A}}{\text{.}} \pm {\text{(1 + 3i)}} \\
{\text{B}}{\text{.}} \pm {\text{(1 - 3i)}} \\
{\text{C}}{\text{.}} \pm {\text{(3 + i)}} \\
{\text{D}}{\text{.}} \pm {\text{(3 - i)}} \\
$
Last updated date: 15th Mar 2023
•
Total views: 304.5k
•
Views today: 4.84k
Answer
304.5k+ views
Hint: In this type of question, where we have to find the square root of a complex number, the standard way is to assume that the square root of the given complex number is a new complex number which is x+iy and then square both sides. Solve the equation formed to get the value of the square root of the given complex number.
Complete step-by-step answer:
In the question, it is given a complex number -8+6i.
Because the number given is a complex number, so, we cannot directly find the value of the square root.
Let us first assume that the square root of a given complex number is x+iy.
$\therefore $ According to question, we can write:
$\sqrt { - 8 + 6i} = ({\text{x + iy)}}$ .
On squaring both side, we get:
$ - 8 + 6i = {({\text{x + iy)}}^2}$ .
On solving the above equation, we get:
$ - 8 + 6i = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2} + 2i{\text{xy}}$ .
Now, equating the real and imaginary part on both side, we get:
$ - 8 = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2}$ ------ (1)
And
$
2{\text{xy = 6}} \\
\Rightarrow {\text{xy = }}\dfrac{6}{2} = 3 \\
$ ----------------- (2)
We know that ${({\text{a + b)}}^2} = {\left( {{\text{a - b}}} \right)^2} + 4{\text{ab}}$ .
Therefore, we can write:
${({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {({{\text{x}}^2}{\text{ - }}{{\text{y}}^2})^2} + 4{\left( {{\text{xy}}} \right)^2}$ .
Putting the values from Equation 1 and 2, we get:
$
{({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {( - 8)^2} + 4{\left( 3 \right)^2} = 64 + 36 = 100 \\
\Rightarrow ({{\text{x}}^2} + {{\text{y}}^2}) = \pm \sqrt {100} = \pm 10 \\
$
$\because $ x and y are real numbers. So, the sum of squares of x and y can never be negative.
So, the only solution is:
$({{\text{x}}^2} + {{\text{y}}^2}) = 10$ -----------(3)
On adding equation 1 and 3, we get:
$
2{{\text{x}}^2} = 2 \\
\Rightarrow {{\text{x}}^2} = \dfrac{2}{2} = 1 \\
\Rightarrow {\text{x}} = \pm \sqrt 1 = \pm 1 \\
$
Putting the value of x in equation 3, we get:
$
{1^2} + {{\text{y}}^2} = 10 \\
\Rightarrow {{\text{y}}^2} = 10 - 1 = 9 \\
\Rightarrow {\text{y = }} \pm \sqrt 9 = \pm 3. \\
$
But, from equation 2:
${\text{xy = 3}}$ .
Since the product of x and y is positive. So, x and y can be either both positive or can both be negative.
Therefore, the square root of $ - 8 + 6i = \pm (1 + 3i)$ i.e. (1+3i) and (-1-3i).
So, option A is correct.
Note: In this type of question the first step is to assume the square root of a given complex number as an unknown complex number and then square both sides to get an equation in x and y .After this use the algebraic identities to find the value of unknown parameter x and y. One point to be noted is that not all the value of x and y will give the required complex number. We have to take only those values which satisfy the remaining equation which in this case is xy=3.
Complete step-by-step answer:
In the question, it is given a complex number -8+6i.
Because the number given is a complex number, so, we cannot directly find the value of the square root.
Let us first assume that the square root of a given complex number is x+iy.
$\therefore $ According to question, we can write:
$\sqrt { - 8 + 6i} = ({\text{x + iy)}}$ .
On squaring both side, we get:
$ - 8 + 6i = {({\text{x + iy)}}^2}$ .
On solving the above equation, we get:
$ - 8 + 6i = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2} + 2i{\text{xy}}$ .
Now, equating the real and imaginary part on both side, we get:
$ - 8 = {{\text{x}}^2}{\text{ - }}{{\text{y}}^2}$ ------ (1)
And
$
2{\text{xy = 6}} \\
\Rightarrow {\text{xy = }}\dfrac{6}{2} = 3 \\
$ ----------------- (2)
We know that ${({\text{a + b)}}^2} = {\left( {{\text{a - b}}} \right)^2} + 4{\text{ab}}$ .
Therefore, we can write:
${({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {({{\text{x}}^2}{\text{ - }}{{\text{y}}^2})^2} + 4{\left( {{\text{xy}}} \right)^2}$ .
Putting the values from Equation 1 and 2, we get:
$
{({{\text{x}}^2}{\text{ + }}{{\text{y}}^2})^2} = {( - 8)^2} + 4{\left( 3 \right)^2} = 64 + 36 = 100 \\
\Rightarrow ({{\text{x}}^2} + {{\text{y}}^2}) = \pm \sqrt {100} = \pm 10 \\
$
$\because $ x and y are real numbers. So, the sum of squares of x and y can never be negative.
So, the only solution is:
$({{\text{x}}^2} + {{\text{y}}^2}) = 10$ -----------(3)
On adding equation 1 and 3, we get:
$
2{{\text{x}}^2} = 2 \\
\Rightarrow {{\text{x}}^2} = \dfrac{2}{2} = 1 \\
\Rightarrow {\text{x}} = \pm \sqrt 1 = \pm 1 \\
$
Putting the value of x in equation 3, we get:
$
{1^2} + {{\text{y}}^2} = 10 \\
\Rightarrow {{\text{y}}^2} = 10 - 1 = 9 \\
\Rightarrow {\text{y = }} \pm \sqrt 9 = \pm 3. \\
$
But, from equation 2:
${\text{xy = 3}}$ .
Since the product of x and y is positive. So, x and y can be either both positive or can both be negative.
Therefore, the square root of $ - 8 + 6i = \pm (1 + 3i)$ i.e. (1+3i) and (-1-3i).
So, option A is correct.
Note: In this type of question the first step is to assume the square root of a given complex number as an unknown complex number and then square both sides to get an equation in x and y .After this use the algebraic identities to find the value of unknown parameter x and y. One point to be noted is that not all the value of x and y will give the required complex number. We have to take only those values which satisfy the remaining equation which in this case is xy=3.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
