
Find the solution for the expression \[\sec^2\left( {\tan^{ - 1}2} \right) + {\csc^2}\left( {\cot^{ - 1}3} \right)\]
A. 5
B. 13
C. 15
D. 6
Answer
233.1k+ views
Hint:Trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation. Use the proper trigonometric formulae and identities including ratios to solve this equation.
Formulae used: \[{\tan ^{ - 1}}x = {{\mathop{\rm Sec}\nolimits} ^{ - 1}}\sqrt {1 + {x^2}} \]and \[\cot x =\csc{ - 1}[\sqrt {1 + {x^2}} ]\]
Complete Step by Step solution
Given: \[\sec^2\left[ {\tan^{ - 1}2} \right] + {\csc^2}\left[ {\cot^{ - 1}3} \right]\]
Taking the Squares common and using necessary trigonometric formulae we get,
\[\left [\sec\left( {\tan^{ - 1}2} \right) \right ]^{2} + \left [{\csc}\left( {\cot^{ - 1}3} \right) \right ]^{2}\]
Using the Trigonometric formulae \[{\tan ^{ - 1}}x = {\sec ^{ - 1}}\sqrt {1 + {x^2}} \]and \[\cot^{-1}x=\csc^{ - 1}[\sqrt {1 + {x^2}} ]\],
\[ = {\left[ {{\mathop{\rm Sec}\nolimits} [{{{\mathop{\rm Sec}\nolimits} }^{ - 1}}[\sqrt {1 + {2^2}} ]} \right]^2} + {\left[ {\csc[\cos e{c^{ - 1}}\sqrt {10} } \right]^2}\]
\[ = {\left[ {\sqrt 5 } \right]^2} + {\left[ {\sqrt {10} } \right]^2}\]
\[ = 5 + 10 = 15\]
Hence, the Solution is option C.
Additional information:
We can prove \[\tan^{-1}x=\sec^{-1}\sqrt{1+x^2}\] by using trigonometry identities.
Assume that, \[\tan^{-1}x = \theta\]
Taking tangent on both sides:
\[\Rightarrow \tan\left(\tan^{-1}x \right) = \tan\theta\]
\[\Rightarrow x = \tan\theta\]
We know that, \[ \sec^{2} \theta = 1+ \tan^{2} \theta\]
Substitute \[x = \tan\theta\] in the above equation:
\[ \sec^{2} \theta = 1+ x^{2}\]
Taking square root on both sides
\[ \sec \theta =\sqrt{ 1+ x^{2}}\]
\[\Rightarrow \theta =\sec^{-1}{\sqrt{ 1+ x^{2}}}\]
Since \[\tan^{-1}x = \theta\]
\[\Rightarrow \tan^{-1}x =\sec^{-1}{\sqrt{ 1+ x^{2}}}\]
Note: There are other ways to do this sum, where you can convert \[{\sec ^2}[{\tan ^{ - 1}}2]\]into \[1 + {\tan ^2}[{\tan ^{ - 1}}2]\]and \[\csc{^2}[{\cot ^{ - 1}}3]\] into \[1 + {\cot ^2}[{\cot ^{ - 1}}3]\]. Which I prefer to be an easier and simpler way to do. The student should be very well informed on trigonometric ratios and conversion formulae as well, both in inverse trigonometric functions and conversion formulae.
Formulae used: \[{\tan ^{ - 1}}x = {{\mathop{\rm Sec}\nolimits} ^{ - 1}}\sqrt {1 + {x^2}} \]and \[\cot x =\csc{ - 1}[\sqrt {1 + {x^2}} ]\]
Complete Step by Step solution
Given: \[\sec^2\left[ {\tan^{ - 1}2} \right] + {\csc^2}\left[ {\cot^{ - 1}3} \right]\]
Taking the Squares common and using necessary trigonometric formulae we get,
\[\left [\sec\left( {\tan^{ - 1}2} \right) \right ]^{2} + \left [{\csc}\left( {\cot^{ - 1}3} \right) \right ]^{2}\]
Using the Trigonometric formulae \[{\tan ^{ - 1}}x = {\sec ^{ - 1}}\sqrt {1 + {x^2}} \]and \[\cot^{-1}x=\csc^{ - 1}[\sqrt {1 + {x^2}} ]\],
\[ = {\left[ {{\mathop{\rm Sec}\nolimits} [{{{\mathop{\rm Sec}\nolimits} }^{ - 1}}[\sqrt {1 + {2^2}} ]} \right]^2} + {\left[ {\csc[\cos e{c^{ - 1}}\sqrt {10} } \right]^2}\]
\[ = {\left[ {\sqrt 5 } \right]^2} + {\left[ {\sqrt {10} } \right]^2}\]
\[ = 5 + 10 = 15\]
Hence, the Solution is option C.
Additional information:
We can prove \[\tan^{-1}x=\sec^{-1}\sqrt{1+x^2}\] by using trigonometry identities.
Assume that, \[\tan^{-1}x = \theta\]
Taking tangent on both sides:
\[\Rightarrow \tan\left(\tan^{-1}x \right) = \tan\theta\]
\[\Rightarrow x = \tan\theta\]
We know that, \[ \sec^{2} \theta = 1+ \tan^{2} \theta\]
Substitute \[x = \tan\theta\] in the above equation:
\[ \sec^{2} \theta = 1+ x^{2}\]
Taking square root on both sides
\[ \sec \theta =\sqrt{ 1+ x^{2}}\]
\[\Rightarrow \theta =\sec^{-1}{\sqrt{ 1+ x^{2}}}\]
Since \[\tan^{-1}x = \theta\]
\[\Rightarrow \tan^{-1}x =\sec^{-1}{\sqrt{ 1+ x^{2}}}\]
Note: There are other ways to do this sum, where you can convert \[{\sec ^2}[{\tan ^{ - 1}}2]\]into \[1 + {\tan ^2}[{\tan ^{ - 1}}2]\]and \[\csc{^2}[{\cot ^{ - 1}}3]\] into \[1 + {\cot ^2}[{\cot ^{ - 1}}3]\]. Which I prefer to be an easier and simpler way to do. The student should be very well informed on trigonometric ratios and conversion formulae as well, both in inverse trigonometric functions and conversion formulae.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

