
Find the shortest distance between the two lines whose vector equations are $\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$ and $\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$.
Answer
576.9k+ views
Hint: Make use of the formula of the perpendicular distance between the two lines and try to find the distance
Formula used:
$\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$ is given by $d = \left| {\dfrac{{\left( {{b_1} \times {b_2}} \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {{b_1} \times {b_2}} \right|}}} \right|$ .
Complete step-by-step answer:
If two lines ${l_1}$ and ${l_2}$ are two skew lines, then there is only one line which is perpendicular to the two lines, which is the shortest distance between the two skew lines.
Equation of line first ${l_1}$ in vector form,
$\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$
Equation of line second ${l_2}$ in vector form,
$\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$
The shortest distance between the two lines $\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$
$d = \left| {\dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|$
Calculation of $\left( {{{\vec a}_2} - {{\vec a}_1}} \right)$ requires subtracting the terms which are in same direction, subtraction of two vectors give a vector quantity.
${a_1} = (\hat i + 2\hat j + 3\hat k)$ and ${a_2} = (4\hat i + 5\hat j + 6\hat k)$
\[
\left( {{a_2} - {a_1}} \right) = \left( {4\hat i + 5\hat j + 6\hat k} \right) - \left( {\hat i - 3\hat j + 2\hat k} \right) \\
\left( {{a_2} - {a_1}} \right) = \left( {4 - 1} \right)\hat i + \left( {5 - 3} \right)\hat j + \left( {6 - 2} \right)\hat k \\
\left( {{a_2} - {a_1}} \right) = 3\hat i + 2\hat j + 4\hat k \\
\]
Calculation of ${\vec b_1} \times {\vec b_2}$. It is a cross product of 2 vector quantities and it gives a vector quantity which is perpendicular to both the vectors.
Here, ${\vec b_1} = \left( {\hat i - 3\hat j + 2\hat k} \right)$ and ${\vec b_2} = \left( {2\hat i + 3\hat j + \hat k} \right)$
\[{b_1} \times {b_2} = \left( {\hat i + 2\hat j + 3\hat k} \right) \times \left( {2\hat i + 3\hat j + \hat k} \right)\]
The cross product of two vectors is calculated by the determinant.
$
{b_1} \times {b_2} = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&3 \\
2&3&1
\end{array}} \right| \\
{b_1} \times {b_2} = \hat i\left[ {1\left( {2 \times 1 - 3 \times 3} \right) - \hat j\left( {1 \times 1 - 3 \times 2} \right) + \hat k\left( {1 \times 3 - 2 \times 2} \right)} \right] \\
{b_1} \times {b_2} = \hat i\left( {2 - 9} \right) - \hat j\left( {1 - 6} \right) + \hat k\left( {3 - 4} \right) \\
{b_1} \times {b_2} = - 7\hat i + 5\hat j - \hat k \\
$
Calculate the modulus of \[\left| {{b_1} \times {b_2}} \right|\] ,
Using the formula for $\vec a = x\hat i + y\hat j + z\hat k$ as $\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
$
\left| {{b_1} \times {b_2}} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2}} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {49 + 25 + 1} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {75} \\
\\
$
Now, calculate the shortest distance between the two lines , by substituting the calculated values in equation(1),
$d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right|$
Now, use the dot product of the two vectors in the numerator of equation (2). The dot product of the vector is the scalar product as it gives only the magnitude.
\[
d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right| \\
d = \left| {\dfrac{{\left( { - 7} \right)\left( 3 \right) + \left( 5 \right)\left( 2 \right) - \left( 1 \right)\left( 4 \right)}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 21 + 10 - 4}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 15}}{{3\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 5}}{{\sqrt 3 }}} \right| \\
d = \dfrac{5}{{\sqrt 3 }} \\
\]
Hence, the shortest distance between the two lines is $d = \dfrac{5}{{\sqrt 3 }}$
Note: The important points which are supposed to be remembered are:
The vector multiplication can be done in two ways,
1)Dot product: It is the product which gives a scalar quantity.
2)Cross product: It gives the vector quantity.
Skew lines are the lines which are neither parallel nor intersect each other.
Formula used:
$\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$ is given by $d = \left| {\dfrac{{\left( {{b_1} \times {b_2}} \right).\left( {{a_2} - {a_1}} \right)}}{{\left| {{b_1} \times {b_2}} \right|}}} \right|$ .
Complete step-by-step answer:
If two lines ${l_1}$ and ${l_2}$ are two skew lines, then there is only one line which is perpendicular to the two lines, which is the shortest distance between the two skew lines.
Equation of line first ${l_1}$ in vector form,
$\vec r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \beta (\hat i - 3\hat j + 2\hat k)$
Equation of line second ${l_2}$ in vector form,
$\vec r = \left( {4\hat i + 5\hat j + 6\hat k} \right) + \mu (2\hat i + 3\hat j + \hat k)$
The shortest distance between the two lines $\vec r = {\vec a_1} + \mu \vec b$and $\vec r = {\vec a_2} + \mu {\vec b_2}$
$d = \left| {\dfrac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|$
Calculation of $\left( {{{\vec a}_2} - {{\vec a}_1}} \right)$ requires subtracting the terms which are in same direction, subtraction of two vectors give a vector quantity.
${a_1} = (\hat i + 2\hat j + 3\hat k)$ and ${a_2} = (4\hat i + 5\hat j + 6\hat k)$
\[
\left( {{a_2} - {a_1}} \right) = \left( {4\hat i + 5\hat j + 6\hat k} \right) - \left( {\hat i - 3\hat j + 2\hat k} \right) \\
\left( {{a_2} - {a_1}} \right) = \left( {4 - 1} \right)\hat i + \left( {5 - 3} \right)\hat j + \left( {6 - 2} \right)\hat k \\
\left( {{a_2} - {a_1}} \right) = 3\hat i + 2\hat j + 4\hat k \\
\]
Calculation of ${\vec b_1} \times {\vec b_2}$. It is a cross product of 2 vector quantities and it gives a vector quantity which is perpendicular to both the vectors.
Here, ${\vec b_1} = \left( {\hat i - 3\hat j + 2\hat k} \right)$ and ${\vec b_2} = \left( {2\hat i + 3\hat j + \hat k} \right)$
\[{b_1} \times {b_2} = \left( {\hat i + 2\hat j + 3\hat k} \right) \times \left( {2\hat i + 3\hat j + \hat k} \right)\]
The cross product of two vectors is calculated by the determinant.
$
{b_1} \times {b_2} = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&3 \\
2&3&1
\end{array}} \right| \\
{b_1} \times {b_2} = \hat i\left[ {1\left( {2 \times 1 - 3 \times 3} \right) - \hat j\left( {1 \times 1 - 3 \times 2} \right) + \hat k\left( {1 \times 3 - 2 \times 2} \right)} \right] \\
{b_1} \times {b_2} = \hat i\left( {2 - 9} \right) - \hat j\left( {1 - 6} \right) + \hat k\left( {3 - 4} \right) \\
{b_1} \times {b_2} = - 7\hat i + 5\hat j - \hat k \\
$
Calculate the modulus of \[\left| {{b_1} \times {b_2}} \right|\] ,
Using the formula for $\vec a = x\hat i + y\hat j + z\hat k$ as $\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
$
\left| {{b_1} \times {b_2}} \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( 5 \right)}^2} + {{\left( { - 1} \right)}^2}} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {49 + 25 + 1} \\
\left| {{b_1} \times {b_2}} \right| = \sqrt {75} \\
\\
$
Now, calculate the shortest distance between the two lines , by substituting the calculated values in equation(1),
$d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right|$
Now, use the dot product of the two vectors in the numerator of equation (2). The dot product of the vector is the scalar product as it gives only the magnitude.
\[
d = \left| {\dfrac{{\left( { - 7\hat i + 5\hat j - \hat k} \right).\left( {3\hat i + 2\hat j + 4\hat k} \right)}}{{\sqrt {75} }}} \right| \\
d = \left| {\dfrac{{\left( { - 7} \right)\left( 3 \right) + \left( 5 \right)\left( 2 \right) - \left( 1 \right)\left( 4 \right)}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 21 + 10 - 4}}{{5\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 15}}{{3\sqrt 3 }}} \right| \\
d = \left| {\dfrac{{ - 5}}{{\sqrt 3 }}} \right| \\
d = \dfrac{5}{{\sqrt 3 }} \\
\]
Hence, the shortest distance between the two lines is $d = \dfrac{5}{{\sqrt 3 }}$
Note: The important points which are supposed to be remembered are:
The vector multiplication can be done in two ways,
1)Dot product: It is the product which gives a scalar quantity.
2)Cross product: It gives the vector quantity.
Skew lines are the lines which are neither parallel nor intersect each other.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

