Find the second derivative i.e. \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] of \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Answer
328.2k+ views
Hint: Directly apply the derivative and apply necessary rules of differentiation. And the given expression should be derived with respect to $x$.
Complete step-by-step answer:
The given expression is
\[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given
expression with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}}\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e.,
$\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$
Applying this formula in the above equation, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}} \right)+\dfrac{d}{dx}\left( {{a}^{2}}{{y}^{2}}
\right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}} \right)\]
Now we know the differentiation of constant term is zero and taking out the constant term on L.H.S., we get
\[{{b}^{2}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{a}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)=0\]
Now applying the chain rule and we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ in the above equation, we get
\[2{{b}^{2}}x+2{{a}^{2}}y\dfrac{dy}{dx}=0\]
Dividing throughout by $'2'$ , we get
\[\begin{align}
& {{b}^{2}}x+{{a}^{2}}y\dfrac{dy}{dx}=0 \\
& \Rightarrow {{a}^{2}}y\dfrac{dy}{dx}=-{{b}^{2}}x \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y}........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
expression with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\dfrac{d}{dx}\left( \dfrac{x}{y}\right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-
u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y\dfrac{dx}{dx}-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\end{align}\]
Substitute value from equation (i), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-x\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)}{{{y}^{2}}}\]
Taking the LCM in numerator, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Substituting the value from the given equation \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Cancelling the like terms, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{b}^{2}}}{y} \right)}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{4}}}{{{a}^{2}}{{y}^{3}}} \\
\end{align}\]
This is the required second order derivative.
Note: Another approach is dividing the given expression by ${{a}^{2}}{{b}^{2}}$, you will get equation
of ellipse.
\[\begin{align}
& {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}} \\
& \Rightarrow
\dfrac{{{b}^{2}}{{x}^{2}}}{{{a}^{2}}{{b}^{2}}}+\dfrac{{{a}^{2}}{{y}^{2}}}{{{a}^{2}}{{b}^{2}}}=\dfrac{{{a}^{2
}}{{b}^{2}}}{{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 \\
\end{align}\]
Then we can differentiate, you will get the same answer.
Complete step-by-step answer:
The given expression is
\[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given
expression with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}}\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e.,
$\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$
Applying this formula in the above equation, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}} \right)+\dfrac{d}{dx}\left( {{a}^{2}}{{y}^{2}}
\right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}} \right)\]
Now we know the differentiation of constant term is zero and taking out the constant term on L.H.S., we get
\[{{b}^{2}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{a}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)=0\]
Now applying the chain rule and we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ in the above equation, we get
\[2{{b}^{2}}x+2{{a}^{2}}y\dfrac{dy}{dx}=0\]
Dividing throughout by $'2'$ , we get
\[\begin{align}
& {{b}^{2}}x+{{a}^{2}}y\dfrac{dy}{dx}=0 \\
& \Rightarrow {{a}^{2}}y\dfrac{dy}{dx}=-{{b}^{2}}x \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y}........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
expression with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\dfrac{d}{dx}\left( \dfrac{x}{y}\right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-
u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y\dfrac{dx}{dx}-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\end{align}\]
Substitute value from equation (i), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-x\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)}{{{y}^{2}}}\]
Taking the LCM in numerator, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Substituting the value from the given equation \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Cancelling the like terms, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{b}^{2}}}{y} \right)}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{4}}}{{{a}^{2}}{{y}^{3}}} \\
\end{align}\]
This is the required second order derivative.
Note: Another approach is dividing the given expression by ${{a}^{2}}{{b}^{2}}$, you will get equation
of ellipse.
\[\begin{align}
& {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}} \\
& \Rightarrow
\dfrac{{{b}^{2}}{{x}^{2}}}{{{a}^{2}}{{b}^{2}}}+\dfrac{{{a}^{2}}{{y}^{2}}}{{{a}^{2}}{{b}^{2}}}=\dfrac{{{a}^{2
}}{{b}^{2}}}{{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 \\
\end{align}\]
Then we can differentiate, you will get the same answer.
Last updated date: 04th Jun 2023
•
Total views: 328.2k
•
Views today: 6.84k
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
