Answer
Verified
494.1k+ views
Hint: Directly apply the derivative and apply necessary rules of differentiation. And the given expression should be derived with respect to $x$.
Complete step-by-step answer:
The given expression is
\[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given
expression with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}}\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e.,
$\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$
Applying this formula in the above equation, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}} \right)+\dfrac{d}{dx}\left( {{a}^{2}}{{y}^{2}}
\right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}} \right)\]
Now we know the differentiation of constant term is zero and taking out the constant term on L.H.S., we get
\[{{b}^{2}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{a}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)=0\]
Now applying the chain rule and we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ in the above equation, we get
\[2{{b}^{2}}x+2{{a}^{2}}y\dfrac{dy}{dx}=0\]
Dividing throughout by $'2'$ , we get
\[\begin{align}
& {{b}^{2}}x+{{a}^{2}}y\dfrac{dy}{dx}=0 \\
& \Rightarrow {{a}^{2}}y\dfrac{dy}{dx}=-{{b}^{2}}x \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y}........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
expression with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\dfrac{d}{dx}\left( \dfrac{x}{y}\right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-
u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y\dfrac{dx}{dx}-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\end{align}\]
Substitute value from equation (i), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-x\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)}{{{y}^{2}}}\]
Taking the LCM in numerator, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Substituting the value from the given equation \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Cancelling the like terms, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{b}^{2}}}{y} \right)}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{4}}}{{{a}^{2}}{{y}^{3}}} \\
\end{align}\]
This is the required second order derivative.
Note: Another approach is dividing the given expression by ${{a}^{2}}{{b}^{2}}$, you will get equation
of ellipse.
\[\begin{align}
& {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}} \\
& \Rightarrow
\dfrac{{{b}^{2}}{{x}^{2}}}{{{a}^{2}}{{b}^{2}}}+\dfrac{{{a}^{2}}{{y}^{2}}}{{{a}^{2}}{{b}^{2}}}=\dfrac{{{a}^{2
}}{{b}^{2}}}{{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 \\
\end{align}\]
Then we can differentiate, you will get the same answer.
Complete step-by-step answer:
The given expression is
\[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\]
Now we will find the first order derivative of the given expression, so we will differentiate the given
expression with respect to $'x'$, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}}\right)\]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e.,
$\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v)$
Applying this formula in the above equation, we get
\[\dfrac{d}{dx}\left( {{b}^{2}}{{x}^{2}} \right)+\dfrac{d}{dx}\left( {{a}^{2}}{{y}^{2}}
\right)=\dfrac{d}{dx}\left( {{a}^{2}}{{b}^{2}} \right)\]
Now we know the differentiation of constant term is zero and taking out the constant term on L.H.S., we get
\[{{b}^{2}}\dfrac{d}{dx}\left( {{x}^{2}} \right)+{{a}^{2}}\dfrac{d}{dx}\left( {{y}^{2}} \right)=0\]
Now applying the chain rule and we know $\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}}$ in the above equation, we get
\[2{{b}^{2}}x+2{{a}^{2}}y\dfrac{dy}{dx}=0\]
Dividing throughout by $'2'$ , we get
\[\begin{align}
& {{b}^{2}}x+{{a}^{2}}y\dfrac{dy}{dx}=0 \\
& \Rightarrow {{a}^{2}}y\dfrac{dy}{dx}=-{{b}^{2}}x \\
\end{align}\]
\[\Rightarrow \dfrac{dy}{dx}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y}........(i)\]
Now we will find the second order derivative. For that we will again differentiate the above
expression with respect to $'x'$ , we get
\[\Rightarrow \dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)\]
Taking out the constant term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\dfrac{d}{dx}\left( \dfrac{x}{y}\right)\]
Now we know the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-
u\dfrac{d}{dx}v}{{{v}^{2}}}\], applying this formula in the above equation, we get
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y\dfrac{dx}{dx}-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-
x\dfrac{dy}{dx}}{{{y}^{2}}} \\
\end{align}\]
Substitute value from equation (i), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{y-x\left( -
\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{x}{y} \right)}{{{y}^{2}}}\]
Taking the LCM in numerator, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Substituting the value from the given equation \[{{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}}\], we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}y} \right)}{{{y}^{2}}}\]
Cancelling the like terms, we get
\[\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{2}}}{{{a}^{2}}}\times \dfrac{\left(
\dfrac{{{b}^{2}}}{y} \right)}{{{y}^{2}}} \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\dfrac{{{b}^{4}}}{{{a}^{2}}{{y}^{3}}} \\
\end{align}\]
This is the required second order derivative.
Note: Another approach is dividing the given expression by ${{a}^{2}}{{b}^{2}}$, you will get equation
of ellipse.
\[\begin{align}
& {{b}^{2}}{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}{{b}^{2}} \\
& \Rightarrow
\dfrac{{{b}^{2}}{{x}^{2}}}{{{a}^{2}}{{b}^{2}}}+\dfrac{{{a}^{2}}{{y}^{2}}}{{{a}^{2}}{{b}^{2}}}=\dfrac{{{a}^{2
}}{{b}^{2}}}{{{a}^{2}}{{b}^{2}}} \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 \\
\end{align}\]
Then we can differentiate, you will get the same answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE