
Find the real roots of the equation \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\] if ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $
A. $ \pm 1$
B. $ \pm \dfrac{1}{2}$
C. $ \pm \dfrac{1}{2}$
D. 0 and 1
Answer
605.7k+ views
Hint: In order to solve this problem use the concept that differentiation is the inverse of integration and vice-versa. Using this concept you can get the roots of the equation given.
Complete step-by-step answer:
The given equations are ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ and \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\]
On solving ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ we get f(x) in terms of x as in limit there is x so, t will be replaced by x.
So, f(x) can be written as ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
And we know integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x).
If ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
So, ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $
The other equation is \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\].
On putting the value of ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $ in the above equation we get the equation as:
\[{{\text{x}}^{\text{2}}} - \sqrt {2 - {x^2}} = 0\]
\[{{\text{x}}^{\text{2}}}{\text{ = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} \]
On squaring both sides we get,
${{\text{x}}^{\text{4}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 2 = 0}}$
${{\text{x}}^{\text{2}}}{\text{ = 1, - 2}}$
So, the real values of ${\text{x} = \pm 1}$
So, the correct option for this question is A.
Note: Whenever you face such types of problems you have to use the concept that integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x). Here in this question we have then found the roots of the equation obtained then eliminated the imaginary roots as only real roots have been asked in the question. Proceeding like this will take you to the right answer.
Complete step-by-step answer:
The given equations are ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ and \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\]
On solving ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{t}}^{\text{2}}}} {\text{dt}}} $ we get f(x) in terms of x as in limit there is x so, t will be replaced by x.
So, f(x) can be written as ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
And we know integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x).
If ${\text{f(x) = }}\int\limits_{\text{1}}^{\text{x}} {\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} {\text{dx}}} $
So, ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $
The other equation is \[{{\text{x}}^{\text{2}}}{\text{ - f '(x) = 0}}\].
On putting the value of ${\text{f '(x) = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} $ in the above equation we get the equation as:
\[{{\text{x}}^{\text{2}}} - \sqrt {2 - {x^2}} = 0\]
\[{{\text{x}}^{\text{2}}}{\text{ = }}\sqrt {{\text{2 - }}{{\text{x}}^{\text{2}}}} \]
On squaring both sides we get,
${{\text{x}}^{\text{4}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 2 = 0}}$
${{\text{x}}^{\text{2}}}{\text{ = 1, - 2}}$
So, the real values of ${\text{x} = \pm 1}$
So, the correct option for this question is A.
Note: Whenever you face such types of problems you have to use the concept that integration of f ‘(x) is f(x) similarly differentiation of f(x) is f ‘(x). Here in this question we have then found the roots of the equation obtained then eliminated the imaginary roots as only real roots have been asked in the question. Proceeding like this will take you to the right answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

