
Find the range of $ 13\cos x + 3\sqrt 3 \sin x - 4 $
Answer
528.9k+ views
Hint: Observe that\[{13^2} + {(3\sqrt 3 )^2} = {14^2}\].
Multiply and divide the given function by 14 to get a point on the unit circle. Also, use the fact: For every point $ P(x,y) $on the unit circle\[{x^2} + {y^2} = 1\]there exists $ \theta \in [0,2\pi ) $such that$ x = \cos \theta $ and $ y = \sin \theta $.
Simplify the function to get an expression without $ \sin x $using the trigonometric identity $ \cos (A - B) = \cos A\cos B - \sin A\sin B $. Finally, use the range of $ \cos \theta $ : $ - 1 \leqslant \cos (x - \theta ) \leqslant 1 $ and get the answer.
Complete step by step solution:
We are given a trigonometric function $ 13\cos x + 3\sqrt 3 \sin x - 4 $
We need to determine the range of this function.
Let $ f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 $
A range of a function $ f $would be the set of all the outcomes or outputs for the various inputs in its domain. It is
Domain of a function $ f $is the set of all possible values on which $ f $can be applied.
This means if $ x $is a variable, then it is possible that for some values of $ x $, the function is not defined.
We would be simplifying the given function to ease the process of finding the range.
We can see that\[{13^2} + {(3\sqrt 3 )^2} = 169 + 27 = 196 = {14^2}\]
Therefore, we multiply and divide by 14 throughout the expression of the given function
Then, we get
$
f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 \\
= 14(\dfrac{{13}}{{14}}\cos x + \dfrac{{3\sqrt 3 }}{{14}}\sin x) - 4..............(1) \\
$
Now, we can observe that $ {(\dfrac{{13}}{{14}})^2} + {(\dfrac{{3\sqrt 3 }}{{14}})^2} = \dfrac{{169}}{{196}} + \dfrac{{27}}{{196}} = \dfrac{{196}}{{196}} = 1 $
This implies that $ (\dfrac{{13}}{{14}},\dfrac{{3\sqrt 3 }}{{14}}) $is a point on the unit circle\[{x^2} + {y^2} = 1\]
Let us recall a fact here: For every point $ P(x,y) $on the unit circle\[{x^2} + {y^2} = 1\]there exists $ \theta \in [0,2\pi ) $ such that $ x = \cos \theta $ and $ y = \sin \theta $.
Therefore, for the point $ (\dfrac{{13}}{{14}},\dfrac{{3\sqrt 3 }}{{14}}) $, there exists $ \theta \in [0,2\pi ) $such that $ \dfrac{{13}}{{14}} = \cos \theta $ and $\dfrac{{3\sqrt 3 }}{{14}} = \sin \theta $.
Then, on substituting in equation (1), we get
$
f(x) = 14(\cos \theta \cos x + \sin \theta \sin x) - 4 \\
= 14(\cos x\cos \theta + \sin x\sin \theta ) - 4 \\
$
Here we have rearranged the cosine and sine values. We can do this because they are real numbers.
We will use the angle difference identity:
$ \cos (A - B) = \cos A\cos B - \sin A\sin B $
Then$ f(x) = 14(\cos (x - \theta )) - 4 $
Now, we know that the range of $ \cos \theta $ is $ [ - 1,1] $ for any angle $ \theta $
That is, $ - 1 \leqslant \cos \theta \leqslant 1 $ for any angle $ \theta $
Therefore,
$ - 1 \leqslant \cos (x - \theta ) \leqslant 1$
Multiplying 14 throughout the expression, we get
$ - 14 \leqslant 14\cos (x - \theta ) \leqslant 14$
Subtracting 4 from each value, we get
$
- 14 + 4 \leqslant 14\cos (x - \theta ) + 4 \leqslant 14 + 4 \\
\Rightarrow - 18 \leqslant 14\cos (x - \theta ) + 4 \leqslant 18 \\
$
Hence, the range of $ f(x) = 13\cos x + 3\sqrt 3 \sin x - 4$ is $ [ - 18,18] $.
Note: The inequality in the final step means that every real number between -18 and 18 belongs to the range of $ f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 $. Therefore, writing {-18, 18} as an answer is completely wrong.
Here, $ [ - 18,18] $ indicates the closed interval taking every value from -18 to 18.
Multiply and divide the given function by 14 to get a point on the unit circle. Also, use the fact: For every point $ P(x,y) $on the unit circle\[{x^2} + {y^2} = 1\]there exists $ \theta \in [0,2\pi ) $such that$ x = \cos \theta $ and $ y = \sin \theta $.
Simplify the function to get an expression without $ \sin x $using the trigonometric identity $ \cos (A - B) = \cos A\cos B - \sin A\sin B $. Finally, use the range of $ \cos \theta $ : $ - 1 \leqslant \cos (x - \theta ) \leqslant 1 $ and get the answer.
Complete step by step solution:
We are given a trigonometric function $ 13\cos x + 3\sqrt 3 \sin x - 4 $
We need to determine the range of this function.
Let $ f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 $
A range of a function $ f $would be the set of all the outcomes or outputs for the various inputs in its domain. It is
Domain of a function $ f $is the set of all possible values on which $ f $can be applied.
This means if $ x $is a variable, then it is possible that for some values of $ x $, the function is not defined.
We would be simplifying the given function to ease the process of finding the range.
We can see that\[{13^2} + {(3\sqrt 3 )^2} = 169 + 27 = 196 = {14^2}\]
Therefore, we multiply and divide by 14 throughout the expression of the given function
Then, we get
$
f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 \\
= 14(\dfrac{{13}}{{14}}\cos x + \dfrac{{3\sqrt 3 }}{{14}}\sin x) - 4..............(1) \\
$
Now, we can observe that $ {(\dfrac{{13}}{{14}})^2} + {(\dfrac{{3\sqrt 3 }}{{14}})^2} = \dfrac{{169}}{{196}} + \dfrac{{27}}{{196}} = \dfrac{{196}}{{196}} = 1 $
This implies that $ (\dfrac{{13}}{{14}},\dfrac{{3\sqrt 3 }}{{14}}) $is a point on the unit circle\[{x^2} + {y^2} = 1\]
Let us recall a fact here: For every point $ P(x,y) $on the unit circle\[{x^2} + {y^2} = 1\]there exists $ \theta \in [0,2\pi ) $ such that $ x = \cos \theta $ and $ y = \sin \theta $.
Therefore, for the point $ (\dfrac{{13}}{{14}},\dfrac{{3\sqrt 3 }}{{14}}) $, there exists $ \theta \in [0,2\pi ) $such that $ \dfrac{{13}}{{14}} = \cos \theta $ and $\dfrac{{3\sqrt 3 }}{{14}} = \sin \theta $.
Then, on substituting in equation (1), we get
$
f(x) = 14(\cos \theta \cos x + \sin \theta \sin x) - 4 \\
= 14(\cos x\cos \theta + \sin x\sin \theta ) - 4 \\
$
Here we have rearranged the cosine and sine values. We can do this because they are real numbers.
We will use the angle difference identity:
$ \cos (A - B) = \cos A\cos B - \sin A\sin B $
Then$ f(x) = 14(\cos (x - \theta )) - 4 $
Now, we know that the range of $ \cos \theta $ is $ [ - 1,1] $ for any angle $ \theta $
That is, $ - 1 \leqslant \cos \theta \leqslant 1 $ for any angle $ \theta $
Therefore,
$ - 1 \leqslant \cos (x - \theta ) \leqslant 1$
Multiplying 14 throughout the expression, we get
$ - 14 \leqslant 14\cos (x - \theta ) \leqslant 14$
Subtracting 4 from each value, we get
$
- 14 + 4 \leqslant 14\cos (x - \theta ) + 4 \leqslant 14 + 4 \\
\Rightarrow - 18 \leqslant 14\cos (x - \theta ) + 4 \leqslant 18 \\
$
Hence, the range of $ f(x) = 13\cos x + 3\sqrt 3 \sin x - 4$ is $ [ - 18,18] $.
Note: The inequality in the final step means that every real number between -18 and 18 belongs to the range of $ f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 $. Therefore, writing {-18, 18} as an answer is completely wrong.
Here, $ [ - 18,18] $ indicates the closed interval taking every value from -18 to 18.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE

What is the chemical name of rust Write its formul class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Judicial review in Indian Constitution is based on class 12 social science CBSE

Write the chemical formulae of the following by crisscross class 12 chemistry CBSE

How do you convert from joules to electron volts class 12 physics CBSE
