Answer
Verified
437.1k+ views
Hint: We use the concept of combinations to find the number of ways to choose one card from total number of cards and then using the method for probability we find the probability of a king card.
* Combination is given by \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
* Probability of an event is given by the number of possibilities divided by total number of possibilities.
Complete answer:
We know a deck contains \[52\]cards where there are 4 kings
Number of ways to choose one card out of \[52\]cards is given by formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Substituting the value for \[n = 52,r = 1\]
\[^{52}{C_1} = \dfrac{{52!}}{{51!1!}}\]
Now since we know factorial opens up as \[n! = n(n - 1)!\]
So, \[^{52}{C_1} = \dfrac{{52 \times 51!}}{{51!}} = 52\]
Now there are 4 king cards out of the total number of cards.
Number of ways to choose one card out of 4 cards is given by formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Substituting the value for \[n = 4,r = 1\]
\[^4{C_1} = \dfrac{{4!}}{{3!1!}}\]
Now since we know factorial opens up as \[n! = n(n - 1)!\]
So, \[^4{C_1} = \dfrac{{4 \times 3!}}{{3!}} = 4\]
Now we find the probability of choosing a king card from a deck of \[52\]cards.
Probability is given by dividing ways of choosing one card from 4 cards divided by probability of choosing one card from \[52\]cards.
Probability \[ = \dfrac{4}{{52}}\]
Writing the numerator and denominator in factored form
Probability \[ = \dfrac{4}{{13 \times 4}}\]
Cancel out the same terms from numerator and denominator.
Probability \[ = \dfrac{1}{4}\]
Thus, probability of choosing one card from deck of \[52\] cards such that the card is a king is \[\dfrac{1}{4}\]or 0.25
Note:
Students should always check their answer of probability should be less than or equal to one and greater than or equal to zero. Students many times try to solve the combination formula by opening the factorial but that makes the solution complex instead try to cancel out as many factorial terms as you can from numerator and denominator.
* Combination is given by \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
* Probability of an event is given by the number of possibilities divided by total number of possibilities.
Complete answer:
We know a deck contains \[52\]cards where there are 4 kings
Number of ways to choose one card out of \[52\]cards is given by formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Substituting the value for \[n = 52,r = 1\]
\[^{52}{C_1} = \dfrac{{52!}}{{51!1!}}\]
Now since we know factorial opens up as \[n! = n(n - 1)!\]
So, \[^{52}{C_1} = \dfrac{{52 \times 51!}}{{51!}} = 52\]
Now there are 4 king cards out of the total number of cards.
Number of ways to choose one card out of 4 cards is given by formula \[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Substituting the value for \[n = 4,r = 1\]
\[^4{C_1} = \dfrac{{4!}}{{3!1!}}\]
Now since we know factorial opens up as \[n! = n(n - 1)!\]
So, \[^4{C_1} = \dfrac{{4 \times 3!}}{{3!}} = 4\]
Now we find the probability of choosing a king card from a deck of \[52\]cards.
Probability is given by dividing ways of choosing one card from 4 cards divided by probability of choosing one card from \[52\]cards.
Probability \[ = \dfrac{4}{{52}}\]
Writing the numerator and denominator in factored form
Probability \[ = \dfrac{4}{{13 \times 4}}\]
Cancel out the same terms from numerator and denominator.
Probability \[ = \dfrac{1}{4}\]
Thus, probability of choosing one card from deck of \[52\] cards such that the card is a king is \[\dfrac{1}{4}\]or 0.25
Note:
Students should always check their answer of probability should be less than or equal to one and greater than or equal to zero. Students many times try to solve the combination formula by opening the factorial but that makes the solution complex instead try to cancel out as many factorial terms as you can from numerator and denominator.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE