# Find the principal value of : ${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)$.

Last updated date: 20th Mar 2023

•

Total views: 304.8k

•

Views today: 7.84k

Answer

Verified

304.8k+ views

Hint: The question is related to inverse trigonometric functions. Assume the given function to be equal to $x$. Find the value of $\cot x$. Then find the value of $x$ which gives the acquired value on applying cotangent function.

Complete step-by-step answer:

We are asked to find the principal value of the inverse trigonometric function ${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)$. Let us assume the value of the inverse trigonometric function to be equal to $x$. So, we get:

${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)=x$

Now, we will apply cotangent function on both sides of the equation. On applying cotangent function on both sides of the equation, we get:

\[\cot \left( {{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) \right)=\cot x\]

Now, we know the value of $\cot \left( {{\cot }^{-1}}y \right)$ is equal to $y$. So, we get:

$\tan \dfrac{3\pi }{4}=\cot x.....(i)$.

Now, we know, tangent function is negative in the second quadrant. So, the value of $\tan \dfrac{3\pi }{4}$ is equal to $-1$ . We will substitute the value of $\tan \dfrac{3\pi }{4}$ as $-1$ in equation $(i)$. On substituting the value of $\tan \dfrac{3\pi }{4}$ as $-1$ in equation $(i)$, we get:

$\cot x=-1$.

We know, the range for principal value is $\left( 0,\pi \right)$. So, we have to find a value of $x$ such that $x\in \left( 0,\pi \right)$ and $\cot x=-1$. The only possible value which satisfies both conditions is $x=\dfrac{3\pi }{4}$.

So , the value of principal value of the inverse trigonometric function ${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)$ is equal to $\dfrac{3\pi }{4}$.

Note: While solving the problem, make sure that the value of the inverse trigonometric function lies in the principal value range, i.e. $\left( 0,\pi \right)$for \[cot\] function. Students generally forget this condition and end up getting a wrong answer. So, this condition must be satisfied by the obtained principal value.

Complete step-by-step answer:

We are asked to find the principal value of the inverse trigonometric function ${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)$. Let us assume the value of the inverse trigonometric function to be equal to $x$. So, we get:

${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)=x$

Now, we will apply cotangent function on both sides of the equation. On applying cotangent function on both sides of the equation, we get:

\[\cot \left( {{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) \right)=\cot x\]

Now, we know the value of $\cot \left( {{\cot }^{-1}}y \right)$ is equal to $y$. So, we get:

$\tan \dfrac{3\pi }{4}=\cot x.....(i)$.

Now, we know, tangent function is negative in the second quadrant. So, the value of $\tan \dfrac{3\pi }{4}$ is equal to $-1$ . We will substitute the value of $\tan \dfrac{3\pi }{4}$ as $-1$ in equation $(i)$. On substituting the value of $\tan \dfrac{3\pi }{4}$ as $-1$ in equation $(i)$, we get:

$\cot x=-1$.

We know, the range for principal value is $\left( 0,\pi \right)$. So, we have to find a value of $x$ such that $x\in \left( 0,\pi \right)$ and $\cot x=-1$. The only possible value which satisfies both conditions is $x=\dfrac{3\pi }{4}$.

So , the value of principal value of the inverse trigonometric function ${{\cot }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)$ is equal to $\dfrac{3\pi }{4}$.

Note: While solving the problem, make sure that the value of the inverse trigonometric function lies in the principal value range, i.e. $\left( 0,\pi \right)$for \[cot\] function. Students generally forget this condition and end up getting a wrong answer. So, this condition must be satisfied by the obtained principal value.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?