Answer

Verified

349.2k+ views

**Hint:**Here, in the question, we have been given vertices of three points of a triangle and we are asked to find the position vector of its circumcentre. We will first calculate the lengths of all sides of the triangle and try to draw it. After that, we will find the circumcentre and its position vector to get the desired result.

Formula used:

Distance between two points \[{P_1}\left( {{x_1},{y_1},{z_1}} \right)\& {P_2}\left( {{x_2},{y_2},{z_2}} \right)\] is calculated by: \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} \]

Mid-point formula between two points \[{P_1}\left( {{x_1},{y_1},{z_1}} \right)\& {P_2}\left( {{x_2},{y_2},{z_2}} \right)\] is given by: \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2},\dfrac{{{z_1} + {z_2}}}{2}} \right)\]

**Complete step-by-step solution:**

Given, Three vertices of a triangle, \[A\left( {3,2,5} \right),B\left( {3,4,5} \right),C\left( {3,4,7} \right)\]

Distance between two points \[A\left( {3,2,5} \right),B\left( {3,4,5} \right)\] is given by,

\[AB = \sqrt {\left| {{{\left( {3 - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( {5 - 5} \right)}^2}} \right|} \\

\Rightarrow AB = 2 \]

Distance between two points \[B\left( {3,4,5} \right),C\left( {3,4,7} \right)\] is given by,

\[BC = \sqrt {{{\left( {3 - 3} \right)}^2} + {{\left( {4 - 4} \right)}^2} + {{\left( {7 - 5} \right)}^2}} \\

\Rightarrow BC = 2 \]

Distance between two points \[A\left( {3,2,5} \right)\& C\left( {3,4,7} \right)\] is given by,

\[AC = \sqrt {{{\left( {3 - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( {7 - 5} \right)}^2}} \\

\Rightarrow AC = 2\sqrt 2 \]

If, we observe the magnitude of sides of triangle, we will see that the given triangle is a right angled triangle as it satisfies the Pythagoras Theorem, \[{\left( {AC} \right)^2} = {\left( {AB} \right)^2} + {\left( {BC} \right)^2}\].

Circumcentre: The point of intersection of perpendicular bisectors of all the sides of the triangle is known as the circumcentre.

Let us draw the triangle first.

Now, we already know that the circumcentre of a right angled triangle lies on its hypotenuse and is the bisector of the hypotenuse. Therefore, the vertices of the circumcentre will be the same as the midpoint of the hypotenuse i.e. the point \[O\].

Mid-point of \[AC = O\left( {\dfrac{{3 + 3}}{2},\dfrac{{4 + 2}}{2},\dfrac{{7 + 5}}{2}} \right)\]

Or, circumcentre of \[\vartriangle ABC = O\left( {3,3,6} \right)\]

Also, Position vector of a point \[P\left( {x,y,z} \right)\] is given as \[\overrightarrow {OP} = x\hat i + y\hat j + z\hat k\], where \[O\] is the origin

**Therefore, the position vector of the circumcentre will be \[3\hat i + 3\hat j + 6\hat k\].**

**Note:**It is important to note here that the concept we used here holds true only in the case of right-angled triangle. It means, in case of right-angled triangle only, the circumcentre lies on the hypotenuse and its vertices are same as the vertices of midpoint of hypotenuse. In other cases, circumcentre can be inside or outside of the triangle.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE